• Title/Summary/Keyword: flux estimator

Search Result 125, Processing Time 0.028 seconds

Neural Network for on-line Parameter Estimation of IPMSM Drive (IPMSM 드라이브의 온라인 파라미터 추정을 위한 신경회로망)

  • 이홍균;이정철;정동화
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.5
    • /
    • pp.332-337
    • /
    • 2004
  • A number of techniques have been developed for estimation of speed or position in motor drives. The accuracy of these techniques is affected by the variation of motor parameters such as the stator resistance, stator inductance or torque constant. This paper is proposed a neural network based estimator for torque and stator resistance in IPMSM Drives. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying. parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator is confirmed by the operating characteristics controlled by neural networks control.

On-line Parameter Estimation of IPMSM Drive using Neural Network (신경회로망을 이용한 IPMSM 드라이브의 온라인 파라미터 추정)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.429-433
    • /
    • 2007
  • A number of techniques have been developed for estimation of speed or position in motor drives. The accuracy of these techniques is affected by the variation of motor parameters such as the stator resistance, stator inductance or torque constant. This paper is proposed a neural network based estimator for torque and ststor resistance in IPMSM Drives. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator is confirmed by the operating characteristics controlled by neural networks control.

On-line Parameter Estimation of IPMSM Drive using Neural Network (신경회로망을 이용한 IPMSM 드라이브의 온라인 파라미터 추정)

  • Choi, Jung-Sik;Ko, Jae-Sub;Lee, Jung-Ho;Kim, Jong-Kwan;Park, Ki-Tae;Park, Byung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.207-209
    • /
    • 2006
  • A number of techniques have been developed for estimation of speed or position in motor drives. The accuracy of these techniques is affected by the variation of motor parameters such as the stator resistance, stator inductance or torque constant. This paper is proposed a neural network based estimator for torque and ststor resistance in IPMSM Drives. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator is confirmed by the operating characteristics controlled by neural networks control.

  • PDF

Neural Network Parameter Estimation of IPMSM Drive using AFLC (AFLC를 이용한 IPMSM 드라이브의 NN 파라미터 추정)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.293-300
    • /
    • 2011
  • A number of techniques have been developed for estimation of speed or position in motor drives. The accuracy of these techniques is affected by the variation of motor parameters such as the stator resistance, stator inductance or torque constant. This paper is proposed a neural network based estimator for torque and stator resistance and adaptive fuzzy learning contrroller(AFLC) for speed control in IPMSM Drives. AFLC is chaged fuzzy rule base by rule base modifier for robust control of IPMSM. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator and AFLC is confirmed by comparing to conventional algorithm.

High Speed Operation of Spindle Motor in the Field Weakening Region (약계자 영역에서의 스핀들 모터 고속운전)

  • Yu J-S;Park S-H;Yoon J-M;Shin S-C;Won C-Y;Choi C;Lee S-H
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.186-193
    • /
    • 2005
  • This paper presents a strategy to drive built in-type spindle induction motor which is used as CNC(Computer Numerical Control) in the industry. Gopinath model flux estimator which is composed of current model to be profitable in the low speed range and voltage model to be profitable in the high speed range is used for rotor flux estimation. Moreover this paper presents to drive the spindle motor in the high speed range by using the flux weakening control. High speed operation of spindle motor in the field weakening region is verified through simulations and experiments.

Implementation of a Senseless Position Controller Capable of Multi-turn Detection in a Turret Servo System (터렛 서보 시스템에서 멀티-턴 검출이 가능한 센서리스 위치제어기 구현)

  • Cho, Nae-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.37-44
    • /
    • 2021
  • This study is implemented as a sensor-less position controller capable of multi-turn detection to replace the expensive absolute encoder used in the turret servo system. For sensor-less control, the position information of the rotor is essential. For this, a magnetic flux estimator was implemented from the mathematical model of IPMSM used in the turret servo system. The position of the rotor and the angular velocity of the rotor were obtained using the rotor magnetic flux calculated from the magnetic flux estimator. Using the zero-crossing technique, one pulse was generated for each rotation of the estimated rotor magnetic flux to measure the number of multi-turns. Simulation and experiment results confirmed the usefulness of the proposed method.

Improved Programmable LPF Flux Estimator with Synchronous Angular Speed Error Compensator for Sensorless Control of Induction Motors (유도 전동기 센서리스 제어를 위한 동기 각속도 오차 보상기를 갖는 향상된 Programmable LPF 자속 추정기)

  • Lee, Sang-Soo;Park, Byoung-Gun;Kim, Rae-Young;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.232-239
    • /
    • 2013
  • This paper proposes an improved stator flux estimator through ensuring conventional PLPF to act as a pure integrator for sensorless control of induction motors. Conventional PLPF uses the estimated synchronous speed as a cut-off frequency and has the gain and phase compensators. The gain and phase compensators are determined on the assumption that the estimated synchronous angular speed is coincident with the real speed. Therefore, if the synchronous angular speed is not same as the real speed, the gain and phase compensation will not be appropriate. To overcome the problem of conventional PLPF, this paper analyzes the relationship between the synchronous speed error and the phase lag error of the stator flux. Based on the analysis, this paper proposes the synchronous speed error compensation scheme. To achieve a start-up without speed sensor, the current model is used as the stator flux estimator at the standstill. When the motor starts up, the current model should be switched into the voltage model. So a stable transition between the voltage model and the current model is required. This paper proposes the simple transition method which determines the initial values of the voltage model and the current model at the transition moment. The validity of the proposed schemes is proved through the simulation results and the experimental results.

SUPERCONVERGENCE AND POSTPROCESSING OF EQUILIBRATED FLUXES FOR QUADRATIC FINITE ELEMENTS

  • KWANG-YEON KIM
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.4
    • /
    • pp.245-271
    • /
    • 2023
  • In this paper we discuss some recovery of H(div)-conforming flux approximations from the equilibrated fluxes of Ainsworth and Oden for quadratic finite element methods of second-order elliptic problems. Combined with the hypercircle method of Prager and Synge, these flux approximations lead to a posteriori error estimators which provide guaranteed upper bounds on the numerical error. Furthermore, we prove some superconvergence results for the flux approximations and asymptotic exactness for the error estimator under proper conditions on the triangulation and the exact solution. The results extend those of the previous paper for linear finite element methods.

Direct Power Sensorless Control of Three-Phase AC/DC PFC PWM Converter using Virtual Flux Observer (가상 자속관측기를 이용한 3상 AC/DC PFC PWM 컨버터의 직접 전력 센서리스 제어)

  • Kim, Young-Sam;Kwon, Young-Ahn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1442-1447
    • /
    • 2012
  • In this paper, direct power control system for three-phase PWM AC/DC converter without the source voltage sensors is proposed. The sinusoidal input current and unity effective power factor are realised based on the estimated flux in the observer. Both active and reactive power calculated using estimated flux. The estimation of flux is performed based on the Reduced-order flux observer using the actual currents and the command control voltage. The source voltage sensors are replaced by a flux estimator. The active and reactive powers estimation are performed based on the estimated flux and Phase anble. The proposed algorithm is verified through simulation and experiment.

Parameter Estimater of IPMSM Drive using Neural Network (신경회로망을 이용한 IPMSM 드라이브의 파라미터 추정)

  • Jung, Tack-Gi;Lee, Jung-Chul;Lee, Hong-Gyun;Lee, Young-Sil;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.197-199
    • /
    • 2003
  • This paper is Proposed a neural network based estimator for torque and ststor resistance in IPMSM Drives. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator is confirmed by the operating characteristics controlled by neural networks control.

  • PDF