• Title/Summary/Keyword: flux data

Search Result 1,546, Processing Time 0.031 seconds

Seasonal Variability of Sonic Layer Depth in the Central Arabian Sea

  • Bhaskar, TVS Udaya;Swain, Debadatta;Ravichandran, M
    • Ocean Science Journal
    • /
    • v.43 no.3
    • /
    • pp.147-152
    • /
    • 2008
  • The seasonal variability of sonic layer depth (SLD) in the central Arabian Sea (CAS) (0 to $25^{\circ}N$ and $62-66^{\circ}E$) was studied using the temperature and salinity (T/S) profiles from Argo floats for the years 2002-2006. The atmospheric forcing responsible for the observed changes was explored using the meteorological data from NCEP/NCAR and Quickscat winds. SLD was obtained from sound velocity profiles computed from T/S data. Net heat flux and wind forcing regulated SLD in the CAS. Up-welling and down-welling (Ekman dynamics) associated with the Findlater Jet controlled SLD during the summer monsoon. While in winter monsoon, cooling and convective mixing regulated SLD in the study region. Weak winds, high insolation and positive net heat flux lead to the formation of thin, warm and stratified sonic layer during pre and post summer monsoon periods, respectively.

A Study of Analyzing for Design of a Linear Force Motor for Hydraulic Valve (밸브구동용 선형 포스모터 설계를 위한 해석 연구)

  • Park, C.S.;Huh, J.Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.1
    • /
    • pp.26-31
    • /
    • 2011
  • To drive hydraulic valve is used Linear force motor, whose force and direction are controlled by electronic signals. Linear force motor has complicated figure and its force produced by changing of flux density which is produced by permanent magnet and electrical winding. Therefore it is needed an exact calculation of the flux density. In this paper a Linear force motor is designed and analysed by 3d program Flu calculating the flux density in air gap and in yoke, Force by different current. The analysed data will be tested by prototype Linear force motor. The data and analysing method can be used for designing Linear force motor.

Convective Boiling of R-l34a in a Bundle of Smooth Tubes

  • Kim, Jung-Oh;Cho, Jin-Pyo;Kim, Nae-Hyun;Choi, Kuk-Kwang
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.2
    • /
    • pp.79-87
    • /
    • 2002
  • In this study, flow boiling experiments were performed using R-134a on a plain tube bundle. Tests were conducted for the following range of variables; quality from 0.1 to 0.9, mass flux from 8kg/$m^2$s to 26 kg/$m^2$s and heat flux from 10kW/$m^2$ to 40kW/$m^2$. The heat transfer coefficients were strongly dependent on the heat flux. However, they were almost independent on the mass flux or quality. The data are compared with the modified Chen model, which predicted satisfactorily ($\pm$30%) the data. The Original Chen model, however, did not adequately predict the effect of quality. The reason may be attributed to the flow pattern of the present test, where the bubbly flow prevailed for the entire test range. The heat transfer coefficients of the tube bundle were 6~40% higher than those of the single tube pool boiling.

A Numerical Simulation of the Interannual and Decadal Variations of the Northern Lower Stratospheric Polar Temperature (북반구 하부성층권 극기온의 경년변화와 수십년주기변화의 수치모의)

  • Choi, Wookap;Kim, Yujin;Kim, Dongjoon
    • Atmosphere
    • /
    • v.19 no.1
    • /
    • pp.79-91
    • /
    • 2009
  • Seoul National University General Circulation Model (SNUGCM) has been run for 100 years to obtain daily temperature and meridional velocity at the Northern lower stratosphere. The model results are compared with the NCEP/NCAR reanalysis data. The polar temperature and the eddy heat flux from the model show that the model-produced climatology has well-known cold bias and weaker planetary wave activities. The model climatology also has a lag in the seasonal evolution. The relationship between the model-produced polar temperature and the eddy heat flux is investigated with respect to the interannual and decadal time scales. The interannual variation of the polar temperature is related with both total and stationary eddy heat flux in January and March, which is in agreement with observation. The model, however, does not reproduce the relationship between the decadal variation of the polar temperature and transient eddy heat flux, which is revealed in the observed data.

Experimental Study on R-410A Evaporation Heat Transfer Characteristics in Shell and Plate Heat Exchanger (셀 앤 플레이트 열 교환기에서의 R-410A 증발열전달에 관한 실험적 연구)

  • Kim In-Kwan;Kim Young-Soo;Park Jae-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.49-59
    • /
    • 2005
  • The evaporation heat transfer experiments are conducted with the shell and plate heat exchanger (S&PHE) without oil in the refrigerant loop using R-410A. An experimental refrigerant loop has been established to measure the evaporation heat transfer coefficient h. of R-410A in a vertical S&PHE. Two vertical counter flow channels were formed in the S&PHE by three plates haying a corrugated trapezoid shape of a $45^{\circ}C$ chevron angle. UP flow of the boiling R-410A in one channel receives heat from the hot down flow of water in the other channel The effects of the refrigerant mass flux. average heat flux. refrigerant saturation temperature and vapor qualify are explored in detail. Similar to the case of a plate heat exchanger. even at a very low Reynolds number, the flow in the S&PHE remains turbulent. The Present data shows that the evaporation heat transfer coefficients of R-410A increased with the vapor qualify. The results indicate a rise in the refrigerant mass flux caused an increase in the h.. Raising the imposed wall heat flux is found to slightly improve h., while h, is found to be lower at a higher refrigerant saturation temperature. Based on the present data. empirical correlation of the evaporation heat transfer coefficient is proposed.

An Experimental Study on the Measurement of Instantaneous Surface Temperature and Heat Flux on the Cylinder Head Surface of DI Diesel Engine (DI 디젤기관 실린더 헤드표면의 순간온도 및 열유속 측정에 관한 실험적 연구)

  • 이재순;김기태;이현구;강태경;우종헌;김수성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.178-187
    • /
    • 1997
  • For the experimental measurement of heat flux of DI diesel engine combustion chamber, the instantaneous temperature probes and data acquisition system were developed. By the analysis of measured temperatures at the cylinder head, the temperature at the point 3 which is located between intake and exhaust valve was higher than that of the other points. Temperatures at the point located mear the exhaust valve were higher than those of intake valve. The instantaneous and mean temperature at the cylinder head increases proportionally to the increase of the engine speed, while the temperature swing varies inversely. Temperature swings have influence on the maximum heat flux values from gas into head surface. It has been verified that these probes and data acquisition system perform well by the comparison of the trend of instantaneous temperature variation with that of measured combustion chamber pressure variation with respect to crank angle. It is presumed that these probes could be used in the measurement of other parts of combustion chamber as piston, cylinder wall etc. for the future study.

  • PDF

Experimental Study on R-134a Evaporation Heat Transfer Characteristics in Plate and Shell Heat Exchanger (판각형 열교환기내의 R-134a 증발열전달 특성에 관한 실험적 연구)

  • Kim, Su-Jin;Park, Jae-Hong;Seo, Moo-Gyo;Kim, Young-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.248-253
    • /
    • 2001
  • An experiment was carried out to investigate the characteristics of the evaporation heat transfer for refrigerant R-134a flowing in a plate and shell heat exchanger. The data are useful in designing more compact and effective evaporators for various refrigeration and air conditioning systems. Two vertical counterflow channels were formed in the exchanger. The R-134a flows up in one channel exchanging heat with the hot water flowing down in the other channel. The effects of the average heat flux, mass flux, saturation temperature and vapor quality were examined in detail. The present data show that the evaporation heat transfer coefficient increases with the vapor quality. A rise in the refrigerant mass flux causes an increase in the $h_r$ value. A rise in the average imposed heat flux causes an increase in the $h_r$, value at the low quality. Finally, at a higer refrigerant saturation temperature the $h_r$, value is found to be lower.

  • PDF

The Prediction of Void Fraction in the Subcooled Boiling Region (서브쿨드 비등 영역에서의 기포계수 계산에 관한 연구)

  • Goon Cherl Park
    • Nuclear Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.195-201
    • /
    • 1984
  • A state-of-the-art mechanistic model has been developed to accurately predict the void fraction in the subcooled boiling region having axial nonuniform heat flux. In this study, the void-dependent drift-flux parameters of the Lahey/Ohkawa model were introduced and the mass flux-dependent condensation coefficient were determined by fitting with the experimental data. This model was tested against several experimental data sets to verify its accuracy. Finally the comparison between the predicted void fraction profiles with this model and the profile-fit model for the hot assembly of Kori-Unit 1, Cycle 1 has been performed. It is conclusive that the results show the good agreement between the measured and predicted void fractions, and the profile-fit model has been found to underestimate the void fraction in the subcooled boiling region.

  • PDF

Detection of Opposite Magnetic Polarity in a Light Bridge : Its Emergence and Cancellation in association with LB Fan-shaped Jets

  • Lim, Eun-Kyung;Yang, Heesu;Yurchyshyn, Vasyl;Chae, Jongchul;Song, Donguk;Madjarska1, Maria S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2020
  • Light bridges (LBs) are relatively bright structures that divide sunspot umbrae into two or more parts. Chromospheric LBs are known to be associated with various activities including fan-shaped jet-like ejections and brightenings. Although magnetic reconnection is frequently suggested to be responsible for such activities, not many studies presented firm evidence to support the scenario. We carry out magnetic field measurements and imaging spectroscopy of a LB where fan-shaped jet-like ejections occur with co-spatial brightenings at their footpoints. We study their fine photospheric structures and magnetic field changes using TiO images, Near-InfraRed Imaging Spectropolarimeter data, and Hα data taken by the 1.6 m Goode Solar Telescope. As a result, we detect magnetic flux emergence in the LB that is of opposite polarity to that of the sunspot. The new flux cancels with the pre-existing flux at a rate of 5.6×1018 Mx hr-1. Both recurrent jet-like ejections and their footpoint brightenings are initiated at the vicinity of the magnetic cancellation, and show apparent horizontal extension along the LB at a projected speed of 4.3 km s-1 to form the fan-shaped appearance. Based on these observations, we suggest that the fan-shaped ejections may have resulted due to slipping reconnection between the new flux emerging in the LB and the ambient sunspot field.

  • PDF

Variations of Turbulent Fluxes in the Atmospheric Surface Layer According to the Presence of Cloud (구름 유무에 따른 대기표층 난류속의 변화)

  • de Oliveira Junior, Jose Francisco;Kwon, Byung-Hyuk
    • Journal of the Korean earth science society
    • /
    • v.25 no.2
    • /
    • pp.87-93
    • /
    • 2004
  • To study the effect of cloud on the variabilities of turbulent fluxes over the flat terrain, we used the gradient method to analyze the dynamic and thermodynamic data from the meteorological 9-m mast (0.75, 3 and 9 m) in Villafria airport in Spain. The decrease of the surface wind speed is governed by cooling at the surface following the evening transition. The sensible heat flux and the momentum flux are increased with the dynamic factor rather than the thermodynamic factor, and the sensible heat flux was not affected by the thermal condition. The global radiation did not play an important role in the variation of the sensible heat flux in the cloudy day, but the atmospheric surface layer was characterized rather by the wind intensity.