• Title/Summary/Keyword: fluvial deposits

Search Result 75, Processing Time 0.027 seconds

Geochemical Properties and Source Areas of Fluvial Terrace Deposits - A Case Study in Danyang and Geum River Basins - (하안단구 퇴적층의 지구화학적 특성과 기원지 - 단양천, 금천 유역을 대상으로 -)

  • Park, Chung-Sun;Cho, Young-Dong;Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.27-40
    • /
    • 2019
  • This study tries to reveal source areas of fluvial terrace deposits in Danyang and Geum River basins located in the northern and southern parts of the Sobaek Mountains, respectively, through geochemistry. The samples analyzed in this study show different grain size properties and can be grouped into the coarse, medium and fine samples. Grain size properties suggest that the coarse samples are typically fluvial deposits and geochemistry from the coarse samples is also similar to that from the bedrocks within the basins. The fine samples show geochemical properties different from the bedrocks and similar to loess deposits in Korea. However, different geochemical concentrations among the fine samples can be also recognized, indicating mixtures of loess materials with weathering products of the bedrocks. One sample among the medium samples is considered as fluvial deposit due to geochemical similarity to the bedrocks, while geochemistry from another sample among the medium samples indicates that loess materials were mixed with more abundant weathering products of the bedrocks than those in the fine samples.

Grain Size Partitioning Using the Weibull Function and Origin of Fluvial Terrace Deposits (Weibull 함수를 이용한 입도 분리와 하안단구 퇴적층의 기원)

  • Park, Chung-Sun;Cho, Young-Dong;Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.2
    • /
    • pp.15-27
    • /
    • 2019
  • This study tries to reveal transport mechanism and origin of components from fluvial terrace deposits in Danyang and Geum River basins, through grain size partitioning using the Weibull function. Grain size parameters suggest that the samples analyzed in this study can be grouped into the coarse, fine and medium samples. The coarse samples are partitioned into three or four components. More than 65% of the coarse samples consist of components by suspension and saltation by fluvial process, while components by attachment to coarse grains or aggregates and/or by individual grains deposited under non-flow condition are also found in the coarse samples. The fine samples consist of four components and components found in loess deposits in Korea occupy >70%, suggestive of the same transport mechanisms (westerlies and winter monsoon) and common source areas with loess deposits in Korea. However, components by aeolian process from local sources as well as by fluvial process are also found in the fine samples. The medium samples are partitioned into components with similar sizes to the coarse and fine samples, respectively.

Architectural Elements of the Fluvial Deposits of Meander Bends in Midstream of the Yeongsan River, Korea

  • Chung, Gong-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Kim, Ju-Yong
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.809-820
    • /
    • 2005
  • The fluvial sequence developed along the channel margin of meander bends in the midstream of the Yeongsan River consists of channel deposits at the bottom and overbank deposits at the top, and shows a fining-upward trend. The fluvial deposits consist of 7 sedimentary facies, and facies association forms 7 architectural elements. The channel deposits formed as channel bar or point bar. The channel bar deposits consisted of architectural element of gravel bedform were formed by channel lag deposits within the channel; whereas, the channel bar deposits consisted of architectural elements of downcurrent-dipping inclined strata sets, cross-stratified and horizontally stratified sets, and horizontally stratified sets were formed by downstream migration of sand wave or downstream transport of sand by traction current in the upper flow regime conditions within the channel. The point bar deposits consist of architectural elements of down current-dipping inclined strata sets, horizontally stratified sets, cross-stratified and horizontally stratified sets, and laterally inclined and horizontally stratified sets. These architectural elements are thought to have been formed by the combined effects of the migration of sand dunes and the formation of horizontal lamination in the upper flow regime plane bed conditions. The overbank deposits consist of the architectural elements of overbank fine and sand sheet and lens. The overbank fines were formed by settling of mud from slackwater during flooding over floodplain whereas the sand sheet and lens were formed by traction of sands introduced episodically fiom channel to the overbank during flooding.

Origin and Stratigraphic Implication of Calcretes from the Gyeongsang Supergroup in the Vicinity of Ulsan City (울산시 부근의 경상누층군에 발달한 캘크리트의 기원과 층서적 의미)

  • Paik, In Sung;Lee, Joon Dong;Kim, Jeong Jin;Kim, In Soo;Kim, Hyun Joo
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.431-446
    • /
    • 1998
  • The calcretes from the Cretaceous Gyeongsang Supergroup in the vicinity of Ulsan city have been examined at five sites (Daedong, Seodong, Ansachon, Deogha, and Mangyangri). In these calcretes, evidences indicating pedogenic origin are recognized. Included are calcite aureoles around detrital grains, pedotubular pores, microstromatactis, circumgranular cracks, fitted structure of adjacent peloids, calcrete ooids, rhizocretions, and calcrete intraclasts. On the basis of calcrete development together with lithofacies, the depositional environments of those deposits are interpreted as lake margin (Daedong deposits), braided to low-sinuosity river (Seodong deposits), braid plain (Ansachon deposits), and meandering river (Deogha and Mangyangri). Stratigraphically, the fluvial deposits of study area show paleoenvironmental change from braided to low-sinuosity river plain under arid climatic condition to meandering river plain under seasonally wet an dry climatic condition. The stratigraphic successions of the Gyeongsang Supergroup of the study area Qacustrine-fluvial-Iacustrine) together with paleoenvironmental change of fluvial deposits suggest that those deposits can be correlated with the Banyaweol-Songnaedong-Geoncheonri formations of the Gyeongsang Supergroup in the western part of the Yangsan Fault.

  • PDF

Post LGM Fluvial Environment and Palynological Changes of South Korea

  • Kim, Ju-Yong;Yang, Dong-Yoon;Bong, Pil-Yoon;Nahm, Wook-Hyun;Lee, Heon-Jong;Lee, Yung-Jo;Hong, Sei-Sun;Lee, Jin-Young;Kim, Jin-Wkan;Oh, Keun-Chang
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.17-23
    • /
    • 2003
  • In Korea terrestrial fluvial sequences can be used as pedological and sedimentological markers indicating a millenium-scale environmental and climatic changes imprinted in fluvial sub-environments, which in turn are represented by the cyclicity of fluvial sands, backswamp organic muds, and flooding muds intercalations of frostcracked or dessicated brown paleosols. Post LGM and Holocene fluvial and alluvial sedimentary sequences of Korea are formed in such landscapes of coastal, floodplain, backswamp and hillslope areas. Among them, the most outstanding depositional sequences are fluvial gravels, sands and organic mud deposits in coastal, fluvial, or alluvial wetlands. The aim of this study is to explain the sedimentary sequences and palynofloral zones since the last 15,000years, on the basis of organic muds layers intercalated in fluvial sand deposits. Jangheung-ri site of Nam river, Soro-ri site of Miho river, Youngsan rivermouth site in Muan, Oksan-ri site of Hampyeong and Sanggap-ri site of Gochang are illustrated to interpret their sedimentary facies, radiocarbon datings, and palynofloral zonation. Up to the Middle to Late Last Glacial(up to 30-35Ka), old river-bed, flooding, and backswamp sequences contain such arboreal pollens as Pinus, Abies, and Picea, and rich in non-arboreal pollens like Cyperaceae, Gramineae, Ranunculaceae, and Compositae. During the LGM and post-LGM periods until Younger Dryas, vegetation has changes from the sub-alpine conifer forest(up to about 17-11Ka), through the conifer and broad-leaved deciduous forest, or mixed forest (formed during 16,680-13,010yrB.P), to the deciduous and broad-leaved forest (older than 9,500yrB.P). In the Earliest Holocene flooding deposits, fragments of plant roots are abundant and subjected to intensive pedogenic processes. During Holocene, three arboreal pollen zones are identified in the ascending order of strata; Pinus-Colyus zone(mixed conifer and deciduous broad-leaved forest, about up to 10Ka), Alnus-Quercus forest (the cool temperate deciduous broad-leaved forest, about 10Ka-2Ka), and Pinus forest (the conifer forest, about after 2Ka), as examplified in Soro-ri site of Cheonwon county. The palynological zonations of Soro-ri, Oksan-ri, Sanggap-ri, Youngsan estuary, and Gimhae fluvial plain have been recognized as a provisional correlation tool, and zonations based on fluvial backswamp and flooding deposits shows a similar result with those of previous researchers.

  • PDF

Concepts and Geomorphic Properties on Fluvial Terraces (하안단구의 개념과 지형 특성)

  • Lee, Gwang-Ryul
    • The Korean Journal of Quaternary Research
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • To reinterpret the meaning of fluvial terraces in the Quaternary researches, the concepts and geomorphic properties of fluvial terraces are reviewed. Fluvial terraces are the alluvial landform that was once river channel or floodplain by paleochannel flowed in elevated areas from the current river by active incision of rivers due to the climatic changes and/or uplifts. As fluvial terraces are the remnants of alluviums after incisions of rivers, the major factors influencing on the incisions are the falling of erosion base, increase of river discharge and distinct geomorphic phenomenon of river. While it is generally known that fluvial terraces deposits in the upper or middle reaches of large rivers were formed during glacial periods, the deposits may be formed at the various periods due to the diverse natural environments and geomorphic properties of specific rivers, because there have been numerous cases that the ages of fluvial terraces in the upper or middle reaches of large rivers in Korea and China can be correlated to the interglacial periods.

  • PDF

Compound Clacrete Deposits from the Dapaepo Formation in Dusong Peninsula, Pusan : Origin, Paleonvironments, and Stratigraphic Implication (부산 두송반도의 다대포층에 발달된 캘크리트복합층 : 성인, 고환경 및 층서적 의미)

  • Paik, In Sung;Lee, Joon Dong;Kim, In Soo;Kim, Jeong Jin;Park, Chong Wook
    • Economic and Environmental Geology
    • /
    • v.30 no.3
    • /
    • pp.263-275
    • /
    • 1997
  • Compound calcrete deposits are recognized from the Dadaepo Formation in Dusong peninsula, Pusan, and their textures, structures, morphology, and stratigraphic distribution are examined. The Dadaepo Formation in study area consists of fluvial plain deposits including floodplain-lake deposits, and the compound calcrete deposits occur above floodplain deposits and below lacustrine deposits. The compound calcrete deposits are composed of nodular to massive (micritic), laminar, nodular, nodular to massive (marly), and marly calcrete deposits. In these calcretes, circumgranular and curved cracks, alveolar structures, fitted peloids, tubular fenestrae with laminar micrite wall (rootlet casts), microstalactic calcite, and tepee structures are observed, which indicates that they are calcic paleosols. Considering their stratigraphic occurrences and pedogenic origin, compound calcrete deposits are interpreted to have formed on distal fluvial plain to palustrine environment by the repetetion of deposition and subsequent calcification due to alternation of lake expansion and contraction. The repetetion of calcrete formation suggests that arid climatic condition was alternated with humid condition in short-term period. Such alternated paleoclimatic condition is similar to those of the Sindong and Hayang groups, and indicates that short-term fluctuations from arid to humid climate were prevailing in overall Gyeongsang Basin. In stratigraphic sense, the compound calcrete deposits can be used as a marker deposit for the correlation of the Dadaepo Formation.

  • PDF

Paleo-red Soil on the High Fluvial Surface in the Middle Basin of Nam-Han River (남한강 중류 하성고위면의 고적색토)

  • Kang, Young-Pork;Lee, Sang-Min
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.828-835
    • /
    • 2005
  • The purpose of this study is to clarify the landform development of fluvial terrace and the soil characteristics occurring on the terrace deposit. In order to achieve the purpose, the characteristics of soil profiles, the physic-chemical properties of soils that are developed on terrace deposits and X-ray diffraction analysis of clay were investigated. The horizon of Al in the high fluvial surface is silt clay loam of red (2YR 4/6). The soil structure is a developed granular structure. The horizon of B1 is silt clay reddish-brown (2.5YR 4/6). The soil structure is a medium subangular blocky structure. This red soil structure is made on heavy textured and compactly packed parent materials of high terrace sediments and usually has A-B-C profile. In most cases, clay accumulations in B-horizon and clay cutans on ped surfaces are observed, which mean the formation of agrillic horizon. As the result of this study, soils derived from fluvial terrace deposits on high fluvial surfaces are considered paleo-red soil which were developed by pedogenese-strong desilicification and rubefaction and strong leaching of bases- under warmer bio-climatic condition during in the old Pleistocene period.

Soil Characteristics on the Fluvial Surface in the Basin of Kyeongan-cheon (Stream) (경안천 유역 하성면에 발달한 토양 특성)

  • Kang, Young-Pork;Sin, Kwang-Sig
    • Journal of the Korean earth science society
    • /
    • v.27 no.5
    • /
    • pp.548-556
    • /
    • 2006
  • The purpose of this study is to clarify the relict landform development of fluvial terrace and the soil characteristics occurring on the fluvial deposits. The physico-chemical properties of soil that are developed on terrace deposits and X-ray diffraction analysis of clay were investigated specifically. The horizon of $A_1$ consists of silt loam with reddish-brown color (5YR4/3). Its soil structures is a weak, fine, subangular, and blocky, breaking to granular. The horizon of $B_{1t}\;and\;B_{2t}$ are silt clay with either a yellowish red (5YR5/6), bright red (2.5YR4/6) color. This soil structure is weak, subangular, and blocky, with thin discontinuous bright red (2.5YR4/6) clay cutans and soft manganese concretions. This red soil structure is made on heavy-textures. It is packed compactly with parent materials of high fluvial surface sediments, and usually has a $A_1-B_{1t}-B_{2t}-C$ profile, from top to bottom. In most cases, clay accumulation in the B-horizon and clay cutans on ped surfaces are observed, which means the argillic horizon has formed. The soils derived from fluvial surface deposits are associated with soils. The soils on the high fluvial surface are considered to be a kind of paleo-red soil which were developed by strong desilicification and rubefaction, and strong leaching of bases under warmer bio-climatic condition during the old Pleistocene period. According to these morphological and anlaytical characteristics,geomorphological features and bio-climatic conditions under which the soil have developed on the high terrace sediment indicate that the soil should be classified as paleo-red soils.