• Title/Summary/Keyword: flutter analysis

Search Result 264, Processing Time 0.034 seconds

Flutter Mechanism Analysis for Firefly Export Model (반디호 수출형 시제기에 대한 플러터 매커니즘 분석)

  • Paek, Seung-Kil;Lee, Sang-Wook
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.35-44
    • /
    • 2007
  • In this study was made the flutter analysis for the export model of Firefly(Bandi-ho), the small canard aircraft. Stiffness model based on internal load generation finite element model was generated. Mass model based on the weight DB for weight control was generated. Aerodynamic model based on Doublet Lattice Method was generated. Preliminary flutter analysis was made. Based on it, major vibration modes are identified and experimentally obtained via the ground vibration test. The obtained normal mode frequencies were used to correlate the finite element model. Flutter analysis was made again and major flutter mechanisms were summarized. The most important flutter root was identified as a coupled root between rigid body roll mode and anti-symmetric wing pitching mode.

  • PDF

Effect of rain on flutter derivatives of bridge decks

  • Gu, Ming;Xu, Shu-Zhuang
    • Wind and Structures
    • /
    • v.11 no.3
    • /
    • pp.209-220
    • /
    • 2008
  • Flutter derivatives provide the basis of predicting the critical wind speed in flutter and buffeting analysis of long-span cable-supported bridges. Many studies have been performed on the methods and applications of identification of flutter derivatives of bridge decks under wind action. In fact, strong wind, especially typhoon, is always accompanied by heavy rain. Then, what is the effect of rain on flutter derivatives and flutter critical wind speed of bridges? Unfortunately, there have been no studies on this subject. This paper makes an initial study on this problem. Covariance-driven Stochastic Subspace Identification (SSI in short) which is capable of estimating the flutter derivatives of bridge decks from their steady random responses is presented first. An experimental set-up is specially designed and manufactured to produce the conditions of rain and wind. Wind tunnel tests of a quasi-streamlined thin plate model are conducted under conditions of only wind action and simultaneous wind-rain action, respectively. The flutter derivatives are then extracted by the SSI method, and comparisons are made between the flutter derivatives under the two different conditions. The comparison results tentatively indicate that rain has non-trivial effects on flutter derivatives, especially on and $H_2$ and $A_2$thus the flutter critical wind speeds of bridges.

Flutter Characteristics of a Morphing Flight Vehicle with Varying Inboard and Outboard Folding Angles

  • Shrestha, Pratik;Jeong, Min-Soo;Lee, In;Bae, Jae-Sung;Koo, Kyo-Nam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.133-139
    • /
    • 2013
  • Morphing aircraft capable of varying their wing form can operate efficiently at various flight conditions. However, radical morphing of the aircraft leads to increased structural complexities, resulting in occurrence of dynamic instabilities such as flutter, which can lead to catastrophic events. Therefore, it is of utmost importance to investigate and understand the changes in flutter characteristics of morphing wings, to ensure uncompromised safety and maximum reliability. In this paper, a study on the flutter characteristics of the folding wing type morphing concept is conducted, to examine the effect of changes in folding angles on the flutter speed and flutter frequency. The subsonic aerodynamic theory Doublet Lattice Method (DLM) and p-k method are used, to perform the flutter analysis in MSC.NASTRAN. The present baseline flutter characteristics correspond well with the results from previous study. Furthermore, enhancement of the flutter characteristics of an aluminum folding wing is proposed, by varying the outboard wing folding angle independently of the inboard wing folding angle. It is clearly found that the flutter characteristics are strongly influenced by changes in the inboard/outboard folding angles, and significant improvement in the flutter characteristics of a folding wing can be achieved, by varying its outboard wing folding angle.

Investigation on flutter stability of three-tower suspension bridges under skew wind

  • Xinjun Zhang;Xuan-Rui Pan;Yuhan Leng;Bingze Chen
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.43-58
    • /
    • 2024
  • To ensure the flutter stability of three-tower suspension bridges under skew wind, by using the computational procedure of 3D refined flutter analysis of long-span bridges under skew wind, in which structural nonlinearity, the static wind action(also known as the aerostatic effect) and the full-mode coupling effect etc., are fully considered, the flutter stability of a three-tower suspension bridge-the Taizhou Bridge over the Yangtze River in completion and during the deck erection is numerically investigated under the constant uniform skew wind, and the influences of skew wind and aerostatic effects on the flutter stability of the bridge under the service and construction conditions are assessed. The results show that the flutter critical wind speeds of three-tower suspension bridge under service and construction conditions fluctuate with the increase of wind yaw angle instead of a monotonous cosine rule as the decomposition method proposed, and reach the minimum mostly in the case of skew wind. Both the skew wind and aerostatic effects significantly reduce the flutter stability of three-tower suspension bridge under the service and construction conditions, and the combined skew wind and aerostatic effects further deteriorate the flutter stability. Both the skew wind and aerostatic effects do not change the evolution of flutter stability of the bridge during the deck erection, and compared to the service condition, they lead to a greater decrease of flutter critical wind speed of the bridge during deck erection, and the influence of the combined skew wind and aerostatic effects is more prominent. Therefore, the skew wind and aerostatic effects must be considered accurately in the flutter analysis of three-tower suspension bridges.

Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load

  • Moosazadeh, Hamid;Mohammadi, Mohammad M.
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.345-372
    • /
    • 2021
  • The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the governing nonlinear differential equations are obtained after fractional integration. This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based on the weighted residual method. The partial differential equations are converted to ordinary differential equations, after which they are solved based on the Runge-Kutta fourth- and fifth-order methods. The comparison between the results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing curvature.

Study on post-flutter state of streamlined steel box girder based on 2 DOF coupling flutter theory

  • Guo, Junfeng;Zheng, Shixiong;Zhu, Jinbo;Tang, Yu;Hong, Chengjing
    • Wind and Structures
    • /
    • v.25 no.4
    • /
    • pp.343-360
    • /
    • 2017
  • The post-flutter state of streamlined steel box girder is studied in this paper. Firstly, the nonlinear aerodynamic self-excited forces of the bridge deck cross section were investigated by CFD dynamic mesh technique and then the nonlinear flutter derivatives were identified on this basis. Secondly, based on the 2-degree-of-freedom (DOF) coupling flutter theory, the torsional amplitude and the nonlinear flutter derivatives were introduced into the traditional direct flutter calculation method, and the original program was improved to the "post-flutter state analysis program" so that it can predict not only the critical flutter velocity but also the movement of the girder in the post-flutter state. Finally, wind tunnel tests were set to verify the method proposed in this paper. The results show that the effect of vertical amplitude on the nonlinear flutter derivatives is negligible, but the torsional amplitude is not; with the increase of wind speed, the post-flutter state of streamlined steel box girder includes four stages, namely, "little amplitude zone", "step amplitude zone", "linearly growing amplitude zone" and "divergence zone"; damping ratio has limited effect on the critical flutter velocity and the steady state response in the post-flutter state; after flutter occurs, the vibration form is a single frequency vibration coupled with torsional and vertical DOF.

Simplified formulations for flutter instability analysis of bridge deck

  • Vu, Tan-Van;Kim, Young-Min;Han, Tong-Seok;Lee, Hak-Eun
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.359-381
    • /
    • 2011
  • This paper deals with the flutter instability problem of flexible bridge decks in the framework of bimodal-coupled aeroelastic bridge system analysis. Based on the analysis of coefficients of the polynomials deduced from the singularity conditions of an integral wind-structure impedance matrix, a set of simplified formulations for calculating the critical wind velocity and coupled frequency are presented. Several case studies are discussed and comparisons with available approximated approaches are made and presented, along with a conventional complex eigenvalue analysis and numerical results. From the results, it is found that the formulas that are presented in this study are applicable to a variety of bridge cross sections that are not only prone to coupled-mode but also to single-mode-dominated flutter.

Flutter study of flapwise bend-twist coupled composite wind turbine blades

  • Farsadi, Touraj;Kayran, Altan
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.267-281
    • /
    • 2021
  • Bending-twisting coupling induced in big composite wind turbine blades is one of the passive control mechanisms which is exploited to mitigate loads incurred due to deformation of the blades. In the present study, flutter characteristics of bend-twist coupled blades, designed for load alleviation in wind turbine systems, are investigated by time-domain analysis. For this purpose, a baseline full GFRP blade, a bend-twist coupled full GFRP blade, and a hybrid GFRP and CFRP bend-twist coupled blade is designed for load reduction purpose for a 5 MW wind turbine model that is set up in the wind turbine multi-body dynamic code PHATAS. For the study of flutter characteristics of the blades, an over-speed analysis of the wind turbine system is performed without using any blade control and applying slowly increasing wind velocity. A detailed procedure of obtaining the flutter wind and rotational speeds from the time responses of the rotational speed of the rotor, flapwise and torsional deformation of the blade tip, and angle of attack and lift coefficient of the tip section of the blade is explained. Results show that flutter wind and rotational speeds of bend-twist coupled blades are lower than the flutter wind and rotational speeds of the baseline blade mainly due to the kinematic coupling between the bending and torsional deformation in bend-twist coupled blades.

Flutter Analysis of Annular Cascades in Counter Rotation

  • Nishino, R.;Namba, M.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.813-824
    • /
    • 2004
  • The paper studies the effect of neighboring blade rows on flutter characteristics of cascading blades. For this purpose the computation program to calculate the unsteady blade loading based on the un-steady lifting surface theory for contra-rotating annular cascades was formulated and coded. Then a computation program to solve the coupled bending-torsion flutter equation for the contra-rotating annular cascades was also developed. Some results of the flutter analysis are presented. The presence of the neighboring blade row gives rise to significant change in the critical flutter condition when the main acoustic duct mode is of cut-on state.

  • PDF

Determination of flutter derivatives by stochastic subspace identification technique

  • Qin, Xian-Rong;Gu, Ming
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.173-186
    • /
    • 2004
  • Flutter derivatives provide the basis of predicting the critical wind speed in flutter and buffeting analysis of long-span cable-supported bridges. In this paper, one popular stochastic system identification technique, covariance-driven Stochastic Subspace Identification(SSI in short), is firstly presented for estimation of the flutter derivatives of bridge decks from their random responses in turbulent flow. Secondly, wind tunnel tests of a streamlined thin plate model and a ${\Pi}$ type blunt bridge section model are conducted in turbulent flow and the flutter derivatives are determined by SSI. The flutter derivatives of the thin plate model identified by SSI are very comparable to those identified by the unifying least-square method and Theodorson's theoretical values. As to the ${\Pi}$ type section model, the effect of turbulence on aerodynamic damping seems to be somewhat notable, therefore perhaps the wind tunnel tests for flutter derivative estimation of those models with similar blunt sections should be conducted in turbulent flow.