• Title/Summary/Keyword: flutter

Search Result 503, Processing Time 0.026 seconds

Flutter Characteristics of a Morphing Flight Vehicle with Varying Inboard and Outboard Folding Angles

  • Shrestha, Pratik;Jeong, Min-Soo;Lee, In;Bae, Jae-Sung;Koo, Kyo-Nam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.133-139
    • /
    • 2013
  • Morphing aircraft capable of varying their wing form can operate efficiently at various flight conditions. However, radical morphing of the aircraft leads to increased structural complexities, resulting in occurrence of dynamic instabilities such as flutter, which can lead to catastrophic events. Therefore, it is of utmost importance to investigate and understand the changes in flutter characteristics of morphing wings, to ensure uncompromised safety and maximum reliability. In this paper, a study on the flutter characteristics of the folding wing type morphing concept is conducted, to examine the effect of changes in folding angles on the flutter speed and flutter frequency. The subsonic aerodynamic theory Doublet Lattice Method (DLM) and p-k method are used, to perform the flutter analysis in MSC.NASTRAN. The present baseline flutter characteristics correspond well with the results from previous study. Furthermore, enhancement of the flutter characteristics of an aluminum folding wing is proposed, by varying the outboard wing folding angle independently of the inboard wing folding angle. It is clearly found that the flutter characteristics are strongly influenced by changes in the inboard/outboard folding angles, and significant improvement in the flutter characteristics of a folding wing can be achieved, by varying its outboard wing folding angle.

Investigation on flutter stability of three-tower suspension bridges under skew wind

  • Xinjun Zhang;Xuan-Rui Pan;Yuhan Leng;Bingze Chen
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.43-58
    • /
    • 2024
  • To ensure the flutter stability of three-tower suspension bridges under skew wind, by using the computational procedure of 3D refined flutter analysis of long-span bridges under skew wind, in which structural nonlinearity, the static wind action(also known as the aerostatic effect) and the full-mode coupling effect etc., are fully considered, the flutter stability of a three-tower suspension bridge-the Taizhou Bridge over the Yangtze River in completion and during the deck erection is numerically investigated under the constant uniform skew wind, and the influences of skew wind and aerostatic effects on the flutter stability of the bridge under the service and construction conditions are assessed. The results show that the flutter critical wind speeds of three-tower suspension bridge under service and construction conditions fluctuate with the increase of wind yaw angle instead of a monotonous cosine rule as the decomposition method proposed, and reach the minimum mostly in the case of skew wind. Both the skew wind and aerostatic effects significantly reduce the flutter stability of three-tower suspension bridge under the service and construction conditions, and the combined skew wind and aerostatic effects further deteriorate the flutter stability. Both the skew wind and aerostatic effects do not change the evolution of flutter stability of the bridge during the deck erection, and compared to the service condition, they lead to a greater decrease of flutter critical wind speed of the bridge during deck erection, and the influence of the combined skew wind and aerostatic effects is more prominent. Therefore, the skew wind and aerostatic effects must be considered accurately in the flutter analysis of three-tower suspension bridges.

Influence of Elastic Restraint and Tip Mass at Free End on Stability of Leipholz's Column (Leipholz 기둥의 안정성에 미치는 자유단의 탄성구속과 말단질량의 영향)

  • 윤한익;박일주;김영수
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.91-97
    • /
    • 1997
  • An analysis is presented on the stability of an elastic cantilever column having the elastic restraints at its free end, carrying an added tip mass, and subjected to uniformly distributed follower forces. The elastic restraints are formed by both a translational spring and a rotatory spring. For this purpose, the governing equations and boundary conditions are derived by using Hamilton's principle, and the critical flutter loads and frequencies are obtained from the numerical evaluation of the eigenvalue functions of this elastic system. The added tip mass increases as a whole the critical flutter load of the elastic cantilever column, but the presence of its moment of inertia of mass has a destabilizing effect. The existence of the translational and rotatory springs at the free end increases the critical flutter load of the elastic cantilever column. Nevertheless, their effects on the critical flutter load are not uniform because of their coupling. The translational spring restraining the free end of the cantilever column decreases the critical flutter load by coupling with a large value of tip mass, while by coupling with the moment of inertia of tip pass its effect on the critical flutter load is contrary. The rotatory spring restraining the free end of the cantilever column increases the critical flutter load by coupling with the tip mass, but decreases it by coupling with the moment of inertia of the tip mass.

  • PDF

Subsonic Flutter Experiment and Analysis of Flat Plate Wing (평판 날개의 아음속 플러터 실험 및 해석)

  • Bae, Jae-Sung;Kim, Jong-Yun;Yang, Seung-Man;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.56-61
    • /
    • 2002
  • Experimental flutter test for a flat plate wing is performed and the flutter analysis methods are verified by comparing with the experimental results. Wing model and experimental equipment are established in the subsonic wind-tunnel. From the response of the wing, the flutter speed is estimated by using the system identification technique. MSC/NASTRAN, V-g method and root-locus method are used for the flutter analysis of the wing. The computed flutter speed is compared with the estimated one from the experiment, and they show good agreement. Wing model in the present study can be used as a benchmark model for the flutter analysis.

Temporary aerodynamic countermeasures for flutter suppression of a double-deck truss girder during erection

  • Zewen Wang;Bokai Yang;Haojun Tang;Yongle Li
    • Wind and Structures
    • /
    • v.38 no.5
    • /
    • pp.399-410
    • /
    • 2024
  • Long-span suspension bridges located in typhoon-prone regions face significant risks of flutter instability, particularly in girder erection. Despite the implementation of aerodynamic countermeasures designed for the service stage, the flutter stability of bridge in girder erection may not meet the required standards. Nowadays, the double-deck truss girder is increasingly common in practical engineering which exhibits different performance from the single-deck truss girder. To gain insights into the flutter performance of this girder type and determine temporary aerodynamic countermeasures for flutter suppression in girder erection, wind tunnel tests were conducted. The effects of affiliated members on the flutter performance were first examined. Subsequently, different aerodynamic countermeasures were designed and their effectiveness was tested. The results indicate that the stabilizers above and below the upper and lower decks are the most effective for the flutter stability of bridge at positive and negative angles of attack, respectively. The higher the stabilizers are, the better the effect on flutter suppression achieves. Considering the feasibility in practical engineering, a temporary stabilizer above the upper deck was considered. It is expected that the results could provide references for the aerodynamic design of double-deck truss girder during erection.

Study of design parameters on flutter stability of cable-stayed-suspension hybrid bridges

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.331-344
    • /
    • 2006
  • The cable-stayed-suspension hybrid bridge is a cooperative system developed from the traditional cable-stayed and suspension bridges, and takes some advantages of the two bridge systems. It is also becoming a competitive design alternative for some long and super long-span bridges. But due to its great flexibility, the flutter stability plays an important role in the design and construction of this bridge system. Considering the geometric nonlinearity of bridge structures and the effects of nonlinear wind-structure interaction, method and its solution procedure of three-dimensional nonlinear flutter stability analysis are firstly presented. Parametric analyses on the flutter stability of a cable-stayed-suspension hybrid bridge with main span of 1400 meters are then conducted by nonlinear flutter stability analysis, some design parameters that significantly influence the flutter stability are pointed out, and the favorable structural system of the bridge is also discussed based on the wind stability.

Aeroelastic analysis of bridges using FEM and moving grids

  • Selvam, R. Panneer;Govindaswamy, S.;Bosch, Harold
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.257-266
    • /
    • 2002
  • In the recent years flow around bridges are investigated using computer modeling. Selvam (1998), Selvam and Bosch (1999), Frandsen and McRobie (1999) used finite element procedures. Larsen and Walther (1997) used discrete vorticity procedure. The aeroelastic instability is a major criterion to be checked for long span bridges. If the wind speed experienced by a bridge is greater than the critical wind speed for flutter, then the bridge fails due to aeroelastic instability. Larsen and Walther (1997) computed the critical velocity for flutter using discrete vortex method similar to wind tunnel procedures. In this work, the critical velocity for flutter will be calculated directly (free oscillation procedure) similar to the approaches reported by Selvam et al. (1998). It is expected that the computational time required to compute the critical velocity using this approach may be much shorter than the traditional approach. The computed critical flutter velocity of 69 m/s is in reasonable comparison with wind tunnel measurement. The no flutter and flutter conditions are illustrated using the bridge response in time.

Identification of 18 flutter derivatives by covariance driven stochastic subspace method

  • Mishra, Shambhu Sharan;Kumar, Krishen;Krishna, Prem
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.159-178
    • /
    • 2006
  • For the slender and flexible cable supported bridges, identification of all the flutter derivatives for the vertical, lateral and torsional motions is essential for its stability investigation. In all, eighteen flutter derivatives may have to be considered, the identification of which using a three degree-of-freedom elastic suspension system has been a challenging task. In this paper, a system identification technique, known as covariance-driven stochastic subspace identification (COV-SSI) technique, has been utilized to extract the flutter derivatives for a typical bridge deck. This method identifies the stochastic state-space model from the covariances of the output-only (stochastic) data. All the eighteen flutter derivatives have been simultaneously extracted from the output response data obtained from wind tunnel test on a 3-DOF elastically suspended bridge deck section-model. Simplicity in model suspension and measurements of only output responses are additional motivating factors for adopting COV-SSI technique. The identified discrete values of flutter derivatives have been approximated by rational functions.

Study of design parameters on flutter stability of cable-stayed bridges

  • Zhang, Xin-Jun;Sun, Bing-Nan
    • Wind and Structures
    • /
    • v.6 no.4
    • /
    • pp.279-290
    • /
    • 2003
  • Flutter stability is one of major concerns on the design of long-span cable-stayed bridges. Considering the geometric nonlinearity of cable-stayed bridges and the effects due to the nonlinear wind-structure interactions, a nonlinear method is proposed to analyze the flutter stability of cable-stayed bridges, and a computer program NFAB is also developed. Taking the Jingsha bridge over the Yangtze River as example, parametric analyses on flutter stability of the bridge are carried out, and some important design parameters that affect the flutter stability of cable-stayed bridges are pointed out.

Flutter Analysis of Small Aircraft using Full Airframe Dynamic FE Model (전기체 동적 유한요소 모델을 이용한 소형항공기 플러터 해석)

  • Lee, Sang-Wook;Paek, Seung-Kil;Kim, Sung-Chan;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.424-429
    • /
    • 2008
  • Aircraft flutter analysis model consists of dynamic FE model and aerodynamic model. Dynamic FE model is composed of stiffness and mass model, and is used for the prediction of normal mode characteristics of the structure. Since aircraft flutter analysis is normally performed in the modal domain, dynamic FE model shall be constructed to describe the modal characteristics of the structure with sufficient accuracy. In this study, dynamic FE modeling method was described using full airframe FE model and structural and system weight data for aircraft flutter analysis. In addition, full airframe dynamic FE model for composite small aircraft was constituted for normal mode and flutter analysis, and the mass modeling results were compared with the target weight data to validate the mass modeling method proposed. Finally, full airframe flutter analysis of composite small aircraft was performed with the dynamic FE model and the aerodynamic model composed.

  • PDF