• Title/Summary/Keyword: fluoride removal

Search Result 97, Processing Time 0.026 seconds

A Study on Applicability of Hydrofluoroethers as CFC-Alternative Cleaning Agents (CFC 대체 산업세정제로의 HFEs의 적용가능성 연구)

  • Min, Hye-Jin;Shin, Jin-Ho;Bae, Jae-Heum;Kim, Hong-Gon;Lee, Hyun-Joo
    • Clean Technology
    • /
    • v.14 no.3
    • /
    • pp.184-192
    • /
    • 2008
  • Fluoride-type cleaning agents such as 2,2,2-trifluoroethanol (TFEA) and hydrofluoroethers (HFEs) do not destroy ozone in the stratosphere and have low global warming potential compared to hydrofluorocarbons(HFCs) and hydrochlorofluorocarbons (HCFCs). Especially, HFEs which have no flash point are paid attention as next generation type of cleaning agents for chlorofluorocarbons (CFCs) since they are safe in handling and have excellent penetration ability compared to hydrocarbon cleaning agents with low flash point. Here, the physical properties and cleaning abilities of fluoride-type cleaning agents such as TFEA, HFE-7100, HFE-7200, HFE-476mec, HFE-449mec-f, AE-3000 and AE-3100E and silicide-type cleaning agents such as trifluoroetoxytrimethylsilane (TFES) and hexamethyldisilazane (HMDS) were measured and compared with those of ozone destruction substances such as CFC-113 and 1,1,1-trichloroethane. They were also compared with toxic methylene chloride (MC) and isopropyl alcohol (IPA) which are now being used as an alternative cleaning agents. As a result, TFEA and HFEs had lower cleaning ability for removal of various soils compared to chloride-type cleaning agents, but they showed excellent cleaning ability fur fluoride-type soils. TFES and HMDS also showed excellent cleaning ability for silicide-type soils.

  • PDF

Sustainable Business Model of Water Purification Equipment and Local Manufacturing Technology Transfer of High Adsorption Bone Char to Remove Fluoride from Groundwater (지하수 불소제거를 위한 고흡착 골탄의 현지 제조기술 이전과 정수장치의 지속 가능한 비즈니스 모델 개발)

  • Maeng, Min-Soo;Lee, He-In;Byun, Jung-Seop;Park, Hyo-Jin;Shin, Gwy-Am
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.41-50
    • /
    • 2021
  • Gongali model Co. Ltd located in Arusha, Tanzania is operating a Nanofilter water station using locally produced bone char to remove fluoride in groundwater. Bone char produced locally had a high turbidity and high concentration of organic matter, which cause color. In addition, since the fluorine adsorption efficiency is low, there is a problem in high maintenance cost due to a short replacement cycle of bone char. In order to overcome this challenge, our research team was that a local furnace was manufactured and applied for produce high adsorption bone char in Gongali model Co. Ltd. By producing high-adsorption bone char locally, the operating efficiency of the Nanofilter water station increased, and it was possible to stably and continuously provide drinking water to local residents. In addition, by presenting a sustainable business model to Gongali model Co Ltd, the persistence of high adsorption bone char and a plan to spread the Nanofilter water station were suggested. Therefore, it was possible to propose a plan to continuously supply low-cost drinking water to the low-income and the neglected class through this local project.

Performance Evaluation of MF Membrane Filtration Pilot System Associated with Pre Coagulation-Sedimentation with Iron-Based Coagulant and Chlorination Treatment (철염계 응집제를 사용한 전응집침전, 전염소처리와 PVDF 재질의 정밀여과 막을 조합한 막 여과 정수처리시스템 평가에 관한 연구)

  • Lee, Sanghyup;Jang, Nakyong;Yoshimasa, Watanabe;Choi, Yongsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.588-597
    • /
    • 2004
  • In this research, we investigated the variation of transmembrane pressure and permeate water quality with pre coagulation and sedimentation with iron based coagulant and chlorination of feed water for PVDF (polyvinylidene fluoride) based MF membrane filtration. NaCIO was fed to the membrane module with dosage of 0.5mg/L and maintained during filtration. To observe the effect of raw water, three types of raw and processed waters, including river surface water, coagulated water and coagulated-settled water, were applied. In case of river surface water, the transmembrane pressure increased drastically in 500 hours of operation. On the contrary, no significant increase in transmembrane pressure was observed for 1,200 hours of operation for coagulated water and coagulated-settled waters. The turbidity of permeate was lower than a detection limit of equipment for all raw waters. The removal efficiency of humic substances of coagulated water and coagulated-settled water was approximate ten times of that of surface river water. And, the removal efficiency of TOC and DOC was approximate two times of that of surface river water. From the results of plant operation, stable operation was maintained at $0.9m^3/m^2{\cdot}day$ filtration flux through the combination of pre-coagulation and pre-chlorination. However, the water quality of permeate was the best when pre-coagulation-sedimentation process was combined with pre-chlorination.

Adsorptive removal of Ni(II) ions from aqueous solution by PVDF/Gemini-ATP hybrid membrane

  • Zhang, Guifang;Qin, Yingxi;Lv, Chao;Liu, Xingtian;Zhao, Yiping;Chen, Li
    • Membrane and Water Treatment
    • /
    • v.7 no.3
    • /
    • pp.209-221
    • /
    • 2016
  • As a highly hydrophilic fibrillar mineral in nature, attapulgite (ATP) is a promising new additive for preparation of ultrafiltration (UF) hybrid membrane. In this work, ATP particles, which were grafted with a new Gemini surfactant of Ethyl Stearate-di(octadecyl dimethyl ammonium chloride) to detach the crystal bundles to single crystal and enhance the uniform dispersion in an organic polymer matrix, were incorporated into poly(vinylidene fluoride) (PVDF) matrix, and PVDF/Gemini-ATP hybrid membranes for adsorptive removal of Ni(II) ions from aqueous solution were prepared via a phase inversion method. Chemical composition, crystalization and morphology of the modified ATP were characterized by Fourier transform infrared spectroscopy (FTIR), Transmission electron microscope (TEM) and X-ray diffraction (XRD), respectively. The morphology of the hybrid membrane was characterized by Scanning electron microscopy (SEM), the performance of permeability, hydrophilicity and adsorption of Ni(II) ions were studied, and the adsorption kinetics of the PVDF/ATP hybrid membranes were particular concerned. The results showed that the hybrid membrane displayed a good thermal stability and hydrophilicity. Comparing with PVDF membrane, the hybrid membrane possessed good adsorption capacity for Ni(II) ions, and the adsorption kinetics fit well with Lagergren second-order equation.

Improvement of Virus Safety of an Antihemophilc Factor IX by Virus Filtration Process

  • Kim, In-Seop;Choi, Yong-Woon;Kang, Yong;Sung, Hark-Mo;Sohn, Ki-Whan;Kim, Yong-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1317-1325
    • /
    • 2008
  • Viral safety is an important prerequisite for clinical preparations of plasma-derived pharmaceuticals. One potential way to increase the safety of therapeutic biological products is the use of a virus-retentive filter. In order to increase the viral safety of human antihemophilic factor IX, particularly in regard to non-enveloped viruses, a virus removal process using a polyvinylidene fluoride membrane filter (Viresolve NFP) has been optimized. The most critical factor affecting the filtration efficiency was operating pH and the optimum pH was 6 or 7. Flow rate increased with increasing operating pressure and temperature. Recovery yield in the optimized production-scale process was 96%. No substantial changes were observed in the physical and biochemical characteristics of the filtered factor IX in comparison with those before filtration. A 47-mm disk membrane filter was used to simulate the process performance of the production-scale cartridges and to test if it could remove several experimental model viruses for human pathogenic viruses, including human hepatitis A virus (HAV), porcine parvovirus (PPV), murine encephalomyocarditis virus (EMCV), human immunodeficiency virus type 1 (HIV), bovine viral diarrhea virus (BVDV), and bovine herpes virus (BHV). Non-enveloped viruses (HAV, PPV, and EMCV) as well as enveloped viruses (HIV, BVDV, and BHV) were completely removed during filtration. The log reduction factors achieved were $\geq$6.12 for HAV, $\geq$4.28 for PPV, $\geq$5.33 for EMCV, $\geq$5.51 for HIV, $\geq$5.17 for BVDV, and $\geq$5.75 for BHV. These results indicate that the virus filtration process successfully improved the viral safety of factor IX.

Treatment for Hydrofluoric Acid Chemical Injury on Hands (불산에 의한 수부 화학 화상의 치료)

  • Nam, Seung Min;Choi, Hwan Jun;Kim, Mi Sun
    • Archives of Plastic Surgery
    • /
    • v.34 no.4
    • /
    • pp.471-477
    • /
    • 2007
  • Purpose: Hydrofluoric acid(HF) is one of the most dangerous mineral acids with dissociated fluoride ions. As hydrofluoric acid is present in various household products(such as rust removers), a large population of industrials is at the risk of HF exposure. It is a very strong organic acid, used widely in glass etching, metal washing, and in the semiconductor industry. Even when using adequate safety measures, lack of care on the user's part results in chemical burn by HF. Symptoms caused by HF-induced chemical burns shows delayed manifestations resulting in a loss of proper treatment opportunities. We therefore reviewed 20 cases of HF-induced chemical burns and treatment principle. Methods: The objects of this study were 19 male patients and 1 female treated from March 2004 to March 2006. There were 19 cases of injury on digits and 1 on the wrist area. There were 15 cases of immediate treatment after sustaining HF-induced burns, and 5 cases of delayed treatment. As a principle, in the emergency treatment, partial or complete removal of the nail along with copious washing with normal saline was done, depending on the degree of HF invasion of the distal digital extremities. Results: The 15 cases who came to the hospital immediately after the injury were healed completely without sequelae, and those who delayed their treatment needed secondary surgical measures, due to the severity of inflammation and necrosis of the digital tissues. Conclusion: As the industrial sector develops, the use of HF is increasing more and more, leading to increase in incidences of HF-induced chemical burns. When treating chemical burns caused by HF, washing by copious amounts of normal saline, along with early removal of the nails, rather than calcium gluconate, seems to be a available method for preserving the shape and function of the digits and the nail. The education of patients regarding this subject should be empathized accordingly.

The Analysis of Performance Limiting Factor in Small Water Treatment Plant (소규모정수장의 기능진단에 의한 성능제한 인자의 도출 및 검증 연구)

  • Ha, Eun-Jung;Oh, Jung-Woo;Kim, Jeong-Hyun;Yoon, Jang-Ken
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.3
    • /
    • pp.240-250
    • /
    • 2000
  • In this study, DWTP Advisor developed from U.S. EPA was adapted for performance assessment in small water treatment plant and studied for improvement advice about the problem. From results of performance assessment, the ability of each major unit process meets to Peak Instantaneous Flow(PIF) as Type I (above 95% of PIF) in N WTP. But, outlet condition in the sedimentation basin are permitting the loss of solids from the basin and the lack of proper solids removal is degrading the performance in N WTP. From results of the hydraulic analysis using fluoride tracer, flow rate in sedimentation basin is rapidly more lower than upper. The Reynolds number, Re, and Froude number, Fr which are used to predict flow condition in sedimentation basin is calculated to be 3159.98 and $2.06{\times}10^{-7}$, respectively. There is possibility of occurrence of short-circuiting and turbulence. Also, the different type of effluent trough makes unstable flow in sedimentation basin and increases carry-overing of sedimented solids.

  • PDF

Role of G-protein in the Contraction of Rabbit Trachealis Muscle (토끼 기관평활근 수축에서 G Protein의 역할)

  • Jung, Jin-Sup;Hwang, Tae-Ho;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.353-362
    • /
    • 1990
  • Fluoride (F-), a known stimulator of G-protein, induced strong contraction in rabbit trachealis muscle. $AlCl_3\;(5{\sim}20\;{\mu}M)$, which is required for G-protein stimulation by $F^-$, potentiated the contractile response to $F^-$. $Ca^{2+}-removal$ and verapamil, a calcium channel blocker, inhibited the fluoroaluminate-induced contraction. Fluoroaluminate increased $^{45}Ca$ influx in the absence and presence of verapamil. In heparin-loaded muscle high $K^+-induced$ contraction was not affected, but acetylcholine and fluoroaluminate-induced contractions were inhibited. The fluoroaluminate-induced contraction was partially relaxed by isoproterenol, a stimulator of adenylate cyclase. Pertussis toxin partially inhibited fluoroaluminate-induced contraction and potentiated isoproterenol-induced relaxation in the presence of fluoroaluminate, but had no effect on acetylcholine-induced contraction and the isoproterenol-induced relaxation in the presence of acetylcholine. These results suggest that fluoroaluminate has the ability to stimulate at least two putative G-proteins in rabbit trachealis muscle; One causes $Ca^{2+}$ influx through the potential-operated $Ca^{2+}$ channel and the other induces intracellular $Ca^{2+}$ release by the increase of inositol-1, 4, 5-triphosphate.

  • PDF

Fabrication of Gas Diffusion Layer for Fuel Cells Using Heat treatment Slurry Coating Method (열처리 슬러리코팅법을 이용한 연료전지 가스확산층의 제조)

  • Kim, Sungjin;Park, Sung Bum;Park, Yong-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.2
    • /
    • pp.65-73
    • /
    • 2012
  • The Gas Diffusion Layer (GDL) of fuel cell, are required to provide both delivery of reactant gases to the catalyst layer and removal of water in either vapor or liquid form in typical PEMFCs. In this study, the fabrication of GDL containing Micro Porous Layer (MPL) made of the slurry of PVDF mixed with carbon black is investigated in detail. Physical properties of GDL containing MPL, such as electrical resistance, gas permeability and microstructure were examined, and the performance of the cell using developed GDL with MPL was evaluated. The results show that MPL with PVDF binder demonstrated uniformly distributed microstructure without large cracks and pores, which resulted in better electrical conductivity. The fuel cell performance test demonstrates that the developed GDL with MPL has a great potential due to enhanced mass transport property due to its porous structure and small pore size.

Fluoride removal using Alum & PACl in batch & continuous mode with subsequent microfiltration

  • Dubey, Swati;Agarwal, Madhu;Gupta, A.B.
    • Membrane and Water Treatment
    • /
    • v.12 no.2
    • /
    • pp.83-93
    • /
    • 2021
  • In this study, defluoridation efficiency by aluminium sulphate (alum) and polyaluminium chloride (PACl) were compared for recommended Nalgonda dose (100%) and 80% of this dose in both batch and continuous modes. The residual turbidity was found to be higher in case of alum as compared to PACl with 80% dose representing lesser efficient settling of suspensions, which primarily comprise alumino-fluoro complexes that result in high residual aluminium in the treated water and this was confirmed by TEM and Zeta analysis. Moreover, the application of PACl also resulted in much lesser addition to the TDS and also required lesser lime for pH compensation due to its lower acidity. Hence this reduced dose was recommended for defluoridation. It was also observed that in case of alum, residual aluminium in treated water was 0.88 mg/L (100% dose) & 0.72 mg/L (80% dose) and in case of PACl, it was 0.52 mg/L(100% dose) & 0.41 mg/L(80% dose). After subsequent microfiltration, residual aluminium was 0.28 & 0.21 mg/L for 100% & 80% dose respectively and in case of alum and in case of PACl, it was 0.16 & 0.11 for 100% & 80% dose respectively, which conform to the Al standards(<0.2 mg/L).