• Title/Summary/Keyword: fluorescent compound

Search Result 66, Processing Time 0.024 seconds

Spectrofluorometric Characteristics of the N-Terminal Domain of Riboflavin Synthase (아미노-말단 리보플라빈 생성효소 단백질의 형광 특성)

  • Kim, Ryu-Ryun;Yi, Jeong-Hwan;Nam, Ki-Seok;Ko, Kyung-Won;Lee, Chan-Yong
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.14-21
    • /
    • 2011
  • Riboflavin synthase catalyzes the formation of one molecule of each riboflavin and 5-amino-6-ribitylamino-2,4-pyrimidinedione by the transfer of a 4-carbon moiety between two molecules of the substrates, 6,7-dimetyl-8-ribityllumazine. The most remarkable feature is the sequence similarity between the N-terminal half (1-97) and the C-terminal half domain (99-213). To investigate the structure and fluorescent characteristics of the N-terminal half of riboflavin synthase (N-RS) in Escherichia coli, more than 10 mutant genes coding for the mutated N-terminal domain of riboflavin synthase were generated by polymerase chain reaction. The genes coding for the proteins were inserted into pQE vector designed for easy purification of protein by 6X-His tagging system, expressed, and the proteins were purified. Almost all mutated N-terminal domain of riboflavin synthases bind to 6,7-dimethyl-8-ribityllumazine and riboflavin as fluorescent ligands. However, N-RS C47D and N-RS ET66,67DQ mutant proteins show colorless, indicating that fluorescent ligands were dissociated during purification. In addition, most mutated proteins show low fluorescent intensity comparing to N-RS wild type, whereas N-RS C48S posses stronger fluorescent intensity than that of wild type protein. Based on this result, N-RS C48S can be used as the tool for high throughput screening system for searching for the compound with inhibitory effect for the riboflavin synthase.

Isolation of Intestinal Glucose Uptake Inhibitor from Punica granatum L.

  • Kim, Hye-Kyung;Baek, Soon-Sun;Cho, Hong-Yon
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.2
    • /
    • pp.135-141
    • /
    • 2011
  • Inhibition of intestinal glucose uptake is beneficial in reducing the blood glucose level for diabetes. To search for an effective intestinal glucose uptake inhibitor from natural sources, 70 native edible plants, fruits and vegetables were screened using Caco-2 cells and fluorescent D-glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG). A compound that was able to inhibit glucose uptake was isolated from methanol extract of Punica granatum L. and called PG-1a. PG-1a appears to be a phthalic acid-diisononyl ester- like compound (PDE) with molecular weight of 418. The inhibitory effect of PG-1a on intestinal glucose uptake was dose-dependent with 89% inhibition at $100\;{\mu}g$/mL. Furthermore, the intestinal glucose uptake inhibitory effect of PG-1a was 1.2-fold higher than phlorizin, a well known glucose uptake inhibitor. This study suggests that PG-1a could play a role in controlling the dietary glucose absorption, and that PG-1a can effectively improve the diabetic condition, and may be used as an optional therapeutic and preventive agent.

Fluorometric Quantitative Analysis of Al(III) Ion Using 5-Methoxy-2-phenyliminomethylphenol

  • Kim, Sun-Deuk;Lee, Hye-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1026-1030
    • /
    • 2009
  • A novel Schiff base ligand (N, O system) 5-methoxy-2-phenyliminomethylphenol ($5-CH_3O-PMP$) was synthesized. Using the synthesized ligand as a fluorescent reagent, a fluorometric method was developed for the quantitative analysis of Al(III) ion. The quantitative analysis of Al(III) ion was performed by making the complex compound between Al(III) ion and $5-CH_3O-PMP$ in ethanol-water solution (85/15, v/v, pH 6.2). The excitation wavelength (${\lambda}em$) of the complex compound was 397 nm while the emmision wavelength (${\lambda}em$) was 498 nm. The quantitative analysis of Al(III) ion was carried out by estimating the fluorescence intensity. The various calibration curves were used for the quantitative analysis in the range of 0.27$\sim$27 ng/mL Al(III) ion concentrations. The detection limit was 0.027 ng/mL. Using the fluorometric method developed in this study, satisfying results were obtained from various samples such as tap water, hot spring water, river water, sea water and waste water, which contained considerable amounts of interfering ions.

Efficient Detection of Heavy Metal Lead Ions in Aqueous Media using Aggregation-Induced Emission (AIE)-based Turn-on Fluorescence Sensor (Aggregation-Induced Emission (AIE) 기반의 Turn-On 형광센서를 이용한 수질 속 중금속 납 이온의 효율적인 검출 )

  • Haemin Choi;Hyeonjeong Seong;Juyeon Cha;Seoung Ho Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.11
    • /
    • pp.757-765
    • /
    • 2023
  • Lead, a heavy metal widely employed in various industries, continues to pose a threat to both human health and the environment. Therefore, the development of a sensor capable of rapidly and accurately detecting lead(II) ions in real-time at contaminated sites is crucial. In this study, we have engineered a fluorescent sensor with the ability to efficiently detect lead(II) ions under actual environmental conditions, including tap water and freshwater. The compound, tetraphenylethylene carboxylic acid derivative (TPE-COOH), exhibits high selectivity and sensitivity toward lead(II) ions in aqueous solution, where the interaction between TPE-COOH and lead(II) ions leads to its aggregation, thus triggering a fluorescence "turn-on" based on the aggregation-induced emission (AIE) mechanism. Impressively, compound TPE-COOH proficiently detects lead(II) ions within a range of 30 to 100 𝜇M in tap water and freshwater, even in the presence of various interfering substances.

Determination of Ursodeoxycholic Acid in Crude Drug Formulations by HPLC and SPE Using Selective Pre-column Derivatization with 2-Bromoacetyl-6-methoxynaphthalene (2-Bromoacetyl-6-methoxynaphthalene을 형광유도체화제로 HPLC와 SPE를 이용한 생약제제 중 Ursodeoxycholic acid의 정량)

  • 진창화;임수희;이기진;심형섭;조의환;염정록
    • YAKHAK HOEJI
    • /
    • v.46 no.6
    • /
    • pp.392-397
    • /
    • 2002
  • A simple and sensitive high performance liquid chromatographic method to quantitate ursodeoxycholic acid in crude drug pharmaceuticals was investigated. Ursodeoxycholic acid react with 2-bromoacetyl-6-methoxynaphthalene (Br-AMN) in the presence of triethylamine to form highly fluorescent derivative. The derivatization procedure was performed at 7$0^{\circ}C$ and completed within 30 min. The optimal wavelength of the fluorescence detector are λ$_{ex}$=300 nm and λ$_{em}$ = 460 nm. The LOD of the ursodeoxycholic acid was 25 ng/mι based on the S/N =3, and the LOQ was 80 ng/mι based on S/N = 10. Crude drug pharmaceuticals pretreated by solid phase extraction (Sep-pak $C_{18}$ cartridge) which were shown very good separation and recovery values for the compound.d.

EFFECT OF NITROGEN POSITION ON EXCITED STATE PROPERTIES OF 1-(9- ANTHRYL )-2-(n-QUINOLINYL)ETHENES

  • Shin, Eun-Ju
    • Journal of Photoscience
    • /
    • v.6 no.2
    • /
    • pp.61-65
    • /
    • 1999
  • The fluorescence properties and photoisomerization behavior of 1-(9-anthryl)-2-(n-quinolinyl)ethene (n-AQE, n=2-4) have been investigated in various solvents. t-3-AQE is strongly fluorescent, but does not accomplish photoisomerization, similar to parent hydrocarbon compound, t-1-(9-anthryl)-2-phenylethene (t-9-APE) or t-1-(9-anthryl)-2-(1-naphthyl)ethene (t-1-ANE). Fluorescence and photoisomerization oft-2-AQE and t-4-AQE are strongly affected by solvent polarity. Dependence of fluorescence quantum yield on the solvent polarity is moderate for t-2-AQE and large for t-4-AQE. In nonpolar solvent (in n-hexane), they exhibit relatively strong fluorescence, but do not isomerize to cis isomer on irradiation, even if inefficient isomerization is observed for t-4-AQE. However, as solvent polarity increases, their fluorescences become weak with efficient photoisomerization to corresponding cis isomer. Intramolecular charge-transfer excited state is presumed to contribute to photoisomerization. The S$_1$ decay parameters were found to be solvent-dependent due to the charge-transfer character of lowest S$_1$ state. In polar solvents, the activation barrier to twisting is reduced enhancing the isomerization of r-2-AQE and t-4-AQE in the singlet manifold.

  • PDF

The Fluorescent Effects on the N-Substituents of Polyarylenevinylenes Having 1,2-Diphenylmaleimide Moieties

  • Lee, Jun-Kyu;Yang, Nam-Choul;Park, Ho-Wook;Suh, Dong-Hack
    • Macromolecular Research
    • /
    • v.11 no.2
    • /
    • pp.92-97
    • /
    • 2003
  • Model compounds and polymers having N-substituted 1,2-diphenylmaleimide moieties were synthesized and characterized by NMR, IR, UV, and fluorescence spectroscopy. The fluorescence intensity could be controlled by N-substituents of model compounds and polymers. As the structure of an N-substituent of them was bulkier, or the electron density of an N-substituent was denser, the photoluminescence intensity was increased. All the compounds showed greenish yellow photoluminescence with the maximum intensity between 510 and 537 nm. From quantum efficiency data of the model compounds and the polymers, the fluorescence intensity of the polymer 11 was higher than that of the model compound 4.

New green fluorescent materials for OLEDs

  • Lee, Chil-Won;Lee, Eun-Jung;Kim, Joon-Woo;Yun, Jong-Hyeok;Lee, Jun-Yeob;Gong, Myoung-Seon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.628-631
    • /
    • 2007
  • We developed new green emitting materials based on the spiro moieties. The introduction of a spiro linkage into the structure of DJGH series lead to a reduction in crystallization tendency and an increase in glass transition temperature. they showed much better emitting efficiency and color purity than commercial host material $Alq_3$.

  • PDF

Hg2+-Selective Chemosensor Derived from 8-Hydroxyquinoline Having Benzothiazole Function in Aqueous Environment

  • Youk, Jin-Soo;Kim, Young-Hee;Kim, Eun-Jin;Youn, Na-Jin;Chang, Suk-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.869-872
    • /
    • 2004
  • Newly synthesized 8-hydroxyquinoline based benzothiazole derivative 2 showed a distinctive $Hg^{2+}$-selectivity over other transition metal ions in aqueous solution. The fluorescence emission at 455 nm of 2 was completely quenched upon interaction with $Hg^{2+}$ ions in dioxane-$H_2O$ system (9 : 1, v/v). The selectivity was decreased in the order of $Hg^{2+}\;>>\;Cu^{2+}\;>\;Cd^{2+}\;>\;Pb^{2+}\;{\thickapprox}\;Zn^{2+}\;{\thickapprox}\;Ni^{2+},\;and\;Hg^{2+}$ concentration dependent fluorescence quenching profile was observed in the presence of common interfering metal ions as background. The fluorescence behavior of 2 suggests that the prepared compound could be used as a fluorescent signaling subunit for the construction of new $Hg^{2+}$-sensitive ON-OFF type supramolecular switching systems.

Metabolism of an Anionic Fluorescent Dye, 1-Anilino-8-naphthalene Sulfonate (ANS) by Rat Liver Microsomes

  • Chung, Youn-Bok;Bae, Woong-Tak;Han, Kun
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.677-682
    • /
    • 1998
  • The present study was designed to examine the metabolism of 1-anilino-8-naphthalene sulfonate (ANS), an anionic compound which is transported into liver via "multispecific organ ic anion transporter", with rat hepatic microsomes. TLC analysis indicated that the fluorescent metabolites were not produced to a measurable extent, which made it possible to assess the ANS metabolism by measuring the fluorescence disappearance. The metabolism of ANS was remarkably inhibited by the presence of SKF-525A as well as by the substitution of 02 by CO gas. ANS metabolism by microsomes also required NADPH as a cofactor. These results indicated that the microsomal monooxygenase system might be mainly responsible for the ANS metabolism. The maximum velocity ($V_{max}$) and Michaelis constant ($K_m$) were calculated to be $4.3{\pm}0.2$ nmol/min/mg protein and $42.1{\pm}2.0\;{\mu}M$, respectively. Assuming that 1g of liver contains 32mg of microsomal protein, the $V_{max}$ value was extrapolated to that per g of liver ($V_{max}^I$). The intrinsic metabolic clearance ($CL_{int}$) under linear conditions calculated from this in vitro metabolic study was 3.3ml/min/g liver, being comparable with that (3.0ml/min/g liver) calculated by analyzing the in vivo plasma disappearance curve in a previous study. Furthermore, the effects of other organic anions on the metabolism of ANS were examined. Bromophenolblue (BPB) and rose bengal (RB) competitively inhibited the metabolism of ANS, while BSP inhibited it only slightly. The inhibition constant ($K_i$) of BPB ($6\;{\mu}M$) was much smaller than that of RB ($200\;{\mu}M$). In conclusion, the microsomal monooxygenase system plays a major role in the metabolism of ANS, and other unmetabolizable organic anions (BPB and RB) compete for this metabolism.

  • PDF