• 제목/요약/키워드: fluorescence probe molecules

검색결과 17건 처리시간 0.019초

Characterization of the Surface Contribution to Fluorescence Correlation Spectroscopy Measurements

  • Chowdhury, Salina A.;Lim, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.583-589
    • /
    • 2011
  • Fluorescence correlation spectroscopy (FCS) is a sophisticated and an accurate analytical technique used to study the diffusion of molecules in a solution at the single-molecule level. FCS is strongly affected by many factors such as the stability of the excitation power, photochemical processes, mismatch between the refractive indices, and variations in the cover glass thickness. We have studied FCS near the surface of a cover glass by using rhodamine 123 as a fluorescent probe and have observed that the surface has a strong influence on the measurements. The temporal autocorrelation of FCS decays with two characteristic times when the confocal detection volume is positioned near the surface of the cover glass. As the position of the detection volume is moved away from the surface, the FCS autocorrelation becomes one-component decaying; the characteristic time of the decay is the same as the faster-decaying component in the FCS autocorrelation near the surface. This observation suggests that the faster component can be attributed to the free diffusion of the probe molecules in the solution, while the slow component has its origin from the interaction between the probe molecules and the surface. We have characterized the surface contribution to the FCS measurements near the surface by changing the position of the detection volume relative to the surface. The influence of the surface on the diffusion of the probe molecules was monitored by changing the chemical properties of the surface. The surface contribution to the temporal autocorrelation of the FCS strongly depends on the chemical nature of the surface. The hydrophobicity of the surface is a major factor determining the surface influence on the free diffusion of the probe molecules near the surface.

Changes in Hydrophobic Surface of Collagen by Chondroitin Sulfate : Fluorescence Intensity Measurements with Bis-ANS as the Probe

  • Kim, Sung-Koo
    • 한국식품영양과학회지
    • /
    • 제24권3호
    • /
    • pp.446-453
    • /
    • 1995
  • The improtant components of extracellular matrix(ECM) are collagen and chondroitin sulfate. The hydrophobic surface of collagen is one of the determining factors of diameter of collagen fiber and also is closely related to the aging phenomena. The controlling mechanism of the diameter of collagen fiber influenced by the interaction with chondroitin sulfate was evaluated using bis-ANS as a hydrophobic probe. Hydrophobic surface area of collagen molecule shielded by chondroitin sulfate was evaluated. Relative fluorescence intensity of collagen in thepresence of chondroitin sulfate was measured using bis-ANS as a hydrophobic probe. The fluorescence intensity decreased with the increase in chondroitin sulfate up to 3.8 chondroitin sulfate/collagen(mole/mole). Further increase in the ratio of chondroitin sulfate to collagen did not change the fluorescence intensity. Similar changes in the relative fluorescence intensity were observed for both rat tail and lathyrific rat skin collagen. The fluorescence intensity indicated by the binding between bis-ANS and hydrophobic sites of collagen was pH dependent, and the shielding effect of collagen-chondroitin sulfate interaction could not be detected at pH above 6.0. This is probably due to the charge repulsions caused by negative charged collagen molecules at higher pH.

  • PDF

Fluorescence Spectroscopy Studies on Micellization of Poloxamer 407 Solution

  • Lee, Ka-Young;Shin, Sang-Chul;Oh, In-Joon
    • Archives of Pharmacal Research
    • /
    • 제26권8호
    • /
    • pp.653-658
    • /
    • 2003
  • It has been reported that at low temperature region, poloxamers existed as a monomer. Upon warming, an equilibrium between unimers and micelles was established, and finally micelle aggregates were formed at higher temperature. In this study, the fluorescence spectroscopy was used to study the micelle formation of the poloxamer 407 in aqueous solution. The excitation and emission spectra of pyrene, a fluorescence probe, were measured as a function of the concentration of poloxamer 407 and temperature. A blue shift in the emission spectrum and a red shift in the excitation spectrum were observed as pyrene transferred from an aqueous to a hydrophobic micellar environment. From the $I_1/I_3 and I_{339}/I_{333}$ results, critical micelle concentration (cmc) and critical micelle temperature (cmt) were determined. Also, from the fluorescence spectra of the probe molecules such as 8-anilino-1-naphthalene sulfonic acid and 1-pyrenecarboxaldehyde, the blue shift of the $\lambda_{max}$ was observed. These results suggest a decrease in the polarity of the microenvironment around probe because of micelle formation. The poloxamer 407 above cmc strongly complexed with hydrophobic fluorescent probes and the binding constant of complex increased with increasing the hydrophobicity of the probe.

Depletion Kinetics of Ground State FeO Molecules by $O_2, N_2O, and \;N_2$

  • Son, H. S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권6호
    • /
    • pp.583-587
    • /
    • 2000
  • Depletion kinetics of ground state FeO molecules by $0_2$, $N_2O$ and $N_2$ has been studied at room temperature. The ground state FeO molecules were generated by photolysis of a $Fe$(CO)_5$/M(O_2$, $N_2O)/He$ mixture using an unfocused weak UV laser beam. The formation of ground state FeO molecules was identified by a laser-induced fluorescence (LIF) method. The intensity distribution of those undisturbed rotational lines suggests that the rotational temperature of the ground state FeO molecules is lower than room temperature. The LIF intensities of FeO molecules at different partial pressures of $0_2$, $N_2O$ and $N_2$ were monitored as a function of the time delay between the photolysis and probe laser pulses to obtain the depletion rate constants for the ground state FeO. They were 1.7+ 0.2x $10^{-12}$, 4.8 $\pm0.4$ x $10^{-12}$, and $1.4\pm$ 0.2x $10^{-12}cm^3$molecule^{-1}s^{-1}$$ by $0_2$, $N_20$, and $N_2$, respectively.

전극 기반의 전하 주입을 통한 DNA 전하수송 특성 측정 (Probe-based Charge Injection Study of DNA Charge Transfer for Applications to Molecular Electro-optic Switching)

  • 류호정;김희영;김동현
    • 전자공학회논문지SC
    • /
    • 제48권3호
    • /
    • pp.53-59
    • /
    • 2011
  • 본 논문에서는 DNA 올리고뉴클리오타이드(oligonucleotide)를 통한 전하 이동을 기반으로 하는 분자성 전자광학 스위칭 소자를 제시한다. DNA 올리고머(oligomer)가 흡착되어 있는 금전극에 전자들이 주입되어 전극으로부터 DNA 올리고머로 전하가 흘러가게 하고 이 전하의 이동도를 광학적 스위칭으로 확인할 수 있도록 제안되었다. DNA 올리고머의 흡착량이 증가함에 따라 DNA를 통한 전하의 이동성과 전극 표면에서의 전하전달 제한성으로 인해 전리전류는 감소하였다. DNA의 끝단에 합성된 Cy3 형광 분자의 점멸도를 전극 기반의 전하 주입법을 이용하여 확인하였다. 이러한 결과들은 DNA 올리고머를 이용한 새로운 분자성 전자광학 스위칭 소자에 이용될 수 있다.

Design and Synthesis of Novel Rhodamine-based Chemosensor Probe Toward Cu2+ Cation

  • Son, Young-A
    • 한국염색가공학회지
    • /
    • 제26권1호
    • /
    • pp.7-12
    • /
    • 2014
  • Nowdays, fluorescent rhodamine chemosensors have attracted a worldwide interest due to its ability to selectively detect heavy and transition metal cations. Due to the importance in environmental and biological toxic effects, the developments of fluorescent chemosensors have been received considerable attention in recent. Especially, a rhodamine-based chemosensor probes have been proved to be useful by exhibiting the efficient "off-on" fluorescence switching toward selected metal cations. This fluorophore can undergo the transformation from non-fluorescent and colorless spirolactam derivative to fluorescent ring-open form. In this study, a new fluorescent chemosensor was synthesized using rhodamine B through two-step procedures, and its selectivity and related optical property were characterized. Selectivity and sensitivity was found toward $Cu^{2+}$ guest molecules and then related optical properties of rhodamine B based fluorescent chemosensor compound were characterized using discussed. In addition, computational calculation was used to determine the HOMO/LUMO values.

Cu,Zn-Superoxide Dismutase Is an Intracellular Catalyst for the H2O2-dependent Oxidation of Dichlorodihydrofluorescein

  • Kim, Young-Mi;Lim, Jung-Mi;Kim, Byung-Chul;Han, Sanghwa
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.161-165
    • /
    • 2006
  • Dichlorodihydrofluorescein ($DCFH_2$) is a widely used probe for intracellular $H_2O_2$. However, $H_2O_2$ can oxidize $DCFH_2$ only in the presence of a catalyst, whose identity in cells has not been clearly defined. We compared the peroxidase activity of Cu,Zn-superoxide dismutase (CuZnSOD), cytochrome c, horseradish peroxidase (HRP), $Cu^{2+}$, and $Fe^{3+}$ under various conditions to identify an intracellular catalyst. Enormous increase by bicarbonate in the rate of $DCFH_2$ oxidation distinguished CuZnSOD from cytochrome c and HRP. Cyanide inhibited the reaction catalyzed by CuZnSOD but accelerated that by $Cu^{2+}$ and $Fe^{3+}$. Oxidation of $DCFH_2$ by $H_2O_2$ in the presence of a cell lysate was also enhanced by bicarbonate and inhibited by cyanide. Confocal microscopy of $H_2O_2$-treated cells showed enhanced DCF fluorescence in the presence of bicarbonate and attenuated fluorescence for the cells pre-incubated with KCN. Moreover, DCF fluorescence was intensified in CuZnSOD-transfected HaCaT and RAW 264.7 cells. We propose that CuZnSOD is a potential intracellular catalyst for the $H_2O_2$-dependent oxidation of $DCFH_2$.

Amphiphilic graft copolymers: Effect of graft chain length and content on colloid gel

  • Nitta, Kyohei;Kimoto, Atsushi;Watanabe, Junji;Ikeda, Yoshiyuki
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제2권2호
    • /
    • pp.97-109
    • /
    • 2015
  • A series of amphiphilic graft copolymers were synthesized by varying the number of graft chains and graft chain lengths. The polarity of the hydrophobic graft chain on the copolymers was varied their solution properties. The glass transition temperature of the copolymers was in the low-temperature region, because of the amorphous nature of poly (trimethylene carbonate) (PTMC). The surface morphology of the lyophilized colloid gel had a bundle structure, which was derived from the combination of poly(N-hydroxyethylacrylamide)( poly(HEAA)) and PTMC. The solution properties were evaluated using dynamic light scattering and fluorescence measurements. The particle size of the graft copolymers was about 30-300 nm. The graft copolymers with a higher number of repeating units attributed to the TMC (trimethylene carbonate) component and with a lower macromonomer ratio showed high thermal stability. The critical association concentration was estimated to be between $2.2{\times}10^{-3}$ and $8.9{\times}10^{-2}mg/mL$, using the pyrene-based fluorescence probe technique. These results showed that the hydrophobic chain of the graft copolymer having a long PTMC segment had a low polarity, dependent on the number of repeating units of TMC and the macromonomer composition ratio. These results demonstrated that a higher number of repeating units of TMC, with a lower macromonomer composition, was preferable for molecular encapsulation.

Depletion Kinetics of the Ground State CrO Generated from the Reaction of Unsaturated Cr(CO)x with O2 and N2O

  • Son, H.S.;Ku, J.K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권2호
    • /
    • pp.184-188
    • /
    • 2002
  • Unsaturated $Cr(CO)_x(1{\leq}x{\leq}5)$molecules were generated in the gas phase from photolysis of $Cr(CO)_6$vapor in He using an unfocussed weak UV laser pulse and their reactions with $O_2$ and $N_2O$ have been studied. The formation and disappearance of the ground state CrO molecules were identified by monitoring laser-induced fluorescence(LIF) intensities vs delay time between the photolysis and probe pulses. The photolysis laser power dependence as well as the delay time dependence of LIF intensities from the CrO orange system showed different behavior as those from ground state Cr atoms, suggesting that the ground state CrO molecules were generated from the reaction between $O_2/N_2O$ and photo-fragments of $Cr(CO)_6$ by one photon absorption. The depletion rate constants for the ground state CrO by $O_2$ and $N_2O$ are $5.4{\pm}0.2{\times}10^{-11}$ and $6.5{\pm}0.4{\times}10^{-12}cm^3molecule^{-1}s^{-1}$, respectively.

Determination of Microviscosity and Location of 1,3-Di(1-pyrenyl) propane in Brain Membranes

  • Kang, Jung-Sook;Kang, In-Goo;Yun, Il
    • Archives of Pharmacal Research
    • /
    • 제20권1호
    • /
    • pp.1-6
    • /
    • 1997
  • We determined the microviscosity of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex and liposomes of total lipids (SPMTL) and phospholipids (SPMPL) extracted from SPMV. Changes in the microviscosity induced by the range and rate of lateral diffusion were measured by the intramolecular excimerization of 1, 3-di(1-pyrenyl)propane (Py-3-Py). The microviscosity values of the direct probe environment in SPMV, SPMTL and SPMPL were 38.17, 31.11 and 27.64 cP, respectively, at$37^{\circ}C$and the activation energies $(E_a)$ of the excimer formation of Py-3-Py in SPMV, SPMTL and SPMPL were 8.236, 7.448 amd 7.025 kcal/mol, respectively. Probe location was measured by polarity and polarizability parameters of the probe Py-3-Py and probe analogues, pyrene, 1-pyrenenonanol and 1-pyrenemethyl-3${\beta}$-hydroxy-22, 23-bisnor-5-cholenate (PMC), incorporated into membranes or solubilized in reference solvents. There existed a good linear relationship between the first absorption peak of the $^1_a$ band and the polarizability parameter $(n^{2}-1)/(2n^{2}+1)$.The calculated refractive index values for SPMV, SPMTL and SPMPL were close to 1.50, which is higher than that of liquid paraffin (n=l.475). The probe location was also determined by using a polarity parameter $(f-1/2f^{I})$. Here f=$({\varepsilon}-1)/(2{\varepsilon}+1)$ is the dielectric constant function and $f^I=(n^2-1)/(2n^2+1)$ is the refractive index function. A correlation existed between the monomer fluorescence intensity ratio and the solvent polarity parameter. The probes incorporated in SPMV, SPMTL, and SPMPL report a polarity value close to that of 1-hexanol $({\varepsilon}=13.29)$. In conclusion, Py-3-Py is located completely inside the membrane, not in the very hydrophobic core, but displaced toward the polar head groups of phospholipid molecules, e.g., central methylene region of aliphatic chains of phospholipid molecules.

  • PDF