• Title/Summary/Keyword: fluorescence emission

Search Result 453, Processing Time 0.025 seconds

A Study on the Blue Fluorescence Characteristics of Silica Nanoparticles with Different Particle Size (실리카 나노 입자의 크기에 따른 청색 형광 특성 연구)

  • Yoon, Ji-Hui;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.1-6
    • /
    • 2019
  • Organic dye-doped silica nanoparticles are used as a promising nanomaterials for bio-labeling, bio-imaging and bio-sensing. Fluorescent silica nanoparticles(NPs) have been synthesized by the modified $St{\ddot{o}}ber$ method. In this study, dye-free fluorescent silica NPs of various sized were synthesized by Sol-Gel process as the modified $St{\ddot{o}}ber$ method. The functional material of APTES((3-aminopropyl)triethoxysilane) was added as an additive during the Sol-Gel process. The as-synthesized silica NPs were calcined at $400^{\circ}C$ for 2 hours. The surface morphology and particle size of the as-synthesized silica NPs were characterized by field-emission scanning electron microscopy. The fluorescent characteristics of the as-synthesized silica NPs was confirmed by UV lamp irradiation of 365 nm wavelength. The photoluminescence (PL) of the as-synthesized silica NPs with different size was analyzed by fluorometry. As the results, the as-synthesized silica NPs exhibits same blue fluorescent characteristics for different NPs size. Especially, as increased of the silica NPs size, the intensity of PL was decreased. The blue fluorescence of dye-free silica NPs was attributed to linkage of $NH_2$ groups of the APTES layer and oxygen-related defects in the silica matrix skeleton.

Synthesis of Nano-Sized Y3Al5O12:Ce3+ Phosphors Prepared by High Energy Beads Milling Process and Their Luminescence Properties

  • Song, Hee-Jo;Kim, Dong-Hoe;Park, Jong-Hoon;Han, Byung-Suh;Hong, Kug-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.386-386
    • /
    • 2012
  • For white light emitting diode (LED) applications, it has been reported that Y3Al5O12:Ce3+ (YAG:Ce) in nano-sized phosphor performs better than it does in micro-sized particles. This is because nano-sized YAG:Ce can reduce internal light scattering when coated onto a blue LED surface. Recently, there have been many reports on the synthesis of nano-sized YAG particles using bottom-up method, such as co-precipitation method, sol-gel process, hydrothermal method, solvothermal method, and glycothermal method. However, there has been no report using top-down method. Top-down method has advantages than bottom-up method, such as large scale production and easy control of doping concentration and particle size. Therefore, in this study, nano-sized YAG:Ce phosphors were synthesized by a high energy beads milling process with varying beads size, milling time and milling steps. The beads milling process was performed by Laboratory Mill MINICER with ZrO2 beads. The phase identity and morphology of nano-sized YAG:Ce were characterized by X-ray powder diffraction (XRD) and field-emission scanning electron microscopy (FESEM), respectively. By controlling beads size, milling time and milling steps, we synthesized a size-tunable and uniform nano-sized YAG:Ce phosphors which average diameters were 100, 85 and 40 nm, respectively. After milling, there was no impurity and all of the peaks were in good agreement with YAG (JCPDS No. 33-0040). Luminescence and quantum efficiency (QE) of nano-sized YAG:Ce phosphors were measured by fluorescence spectrometer and QE measuring instrument, respectively. The synthesized YAG:Ce absorbed light efficiently in the visible region of 400-500 nm, and showed single broadband emission peaked at 550 nm with 50% of QE. As a result, by considering above results, high energy beads milling process could be a facile and reproducible synthesis method for nano-sized YAG:Ce phosphors.

  • PDF

Synthesis of CaZrO3 : Eu3+ phosphor by skull melting method (스컬용융법에 의한 CaZrO3 : Eu3+ 형광체 합성)

  • Choi, Hyunmin;Kim, Youngchool;Seok, Jeongwon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.4
    • /
    • pp.131-135
    • /
    • 2020
  • Single crystal phased CaZrO3 : Eu3+ phosphor have been synthesized by skull melting method. The crystal structure, morphology and optical properties of synthesized phosphor were investigated XRD (X-ray diffraction), SEM (scanning electron microscopy), UV (ultraviolet) fluorescence reaction and PL (photo luminescence). The starting materials having chemical composition of CaO: ZrO2 : Eu2O3= 0.962 : 1.013 : 0.025 mol% were charged into a cold crucible. The cold crucible was 120 mm in inner diameter and 150 mm in inner height, and 3 kg of mixed powder (CaO, ZrO2 and Eu2O3) was completely melted within 1 hour at an oscillation frequency of 3.4 MHz, maintained in the molten state for 2 hours, and finally air-cooled. The XRD results show that synthesized phosphor is stabilized in orthorhombic perovskite structure without any impurity phases. The synthesized phosphor could be excited by UV light (254 or 365 nm) and the emission spectra results indicated that bright red luminescence of CaZrO3 : Eu3+ due to magnetic dipole transition 5D07F2 at 615 nm was dominant.

Size-resolved Source Apportionment of Ambient Particles by Positive Matrix Factorization at Gosan, Jeju Island during ACE-Asia (PMF 분석을 이용한 ACE-Asia 측정기간 중 제주 고산지역 입자상 물질의 입경별 발생원 추정)

  • Moon K.J.;Han, J.S.;Kong, B.J.;Jung, I.R.;Cliff Steven S.;Cahill Thomas A.;Perry Kelvin D.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.590-603
    • /
    • 2006
  • Size-and time-resolved aerosol samples were collected using an eight-stage Davis rotating unit for monitoring (DRUM) sampler from 23 March to 29 April 2001 at Gosan, Jeju Island, Korea, which is one of the super sites of Asia-Pacific Regional Aerosol Characterization Experiment(ACE-Asia). These samples were analyzed using synchrotron X-ray fluorescence for 3-hr average concentrations of 19 elements including Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, and Pb. The size-resolved data sets were then analyzed using the positive matrix factorization(PMF) technique to identify possible sources and estimate their contributions to particulate matter mass. PMF analysis uses the uncertainty of the measured data to provide an optimal weighting. Twelve sources were resolved in eight size ranges($0.09{\sim}12{\mu}m$) and included continental soil, local soil, sea salt, biomass/biofuel burning, coal combustion, oil combustion, municipal incineration, nonferrous metal source, ferrous metal source, gasoline vehicle, diesel vehicle, and volcanic emission. The PMF result of size-resolved source contributions showed that natural sources represented by local soil, sea salt, continental soil, and volcanic emission contributed about 79% to the predicted primary particulate matter(PM) mass in the coarse size range ($1.15{\sim}12{\mu}m$) while anthropogenic sources such as coal combustion and biomass/biofuel burning contributed about 58% in the fine size range($0.56{\sim}2.5{\mu}m$). The diesel vehicle source contributed mostly in ultra-fine size range($0.09{\sim}0.56{\mu}m$) and was responsible for about 56% of the primary PM mass.

The New X-ray Induced Electron Emission Spectrometer

  • Yu.N.Yuryev;Park, Hyun-Min;Lee, Hwack-Ju;Kim, Ju-Hwnag;Cho, Yang-Ku;K.Yu.Pogrebitsky
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.5-6
    • /
    • 2002
  • The new spectrometer for X-ray Induced Electron Emission Spectroscopy (XIEES) .has been recently developed in KRISS in collaboration with PTI (Russia). The spectrometer allows to perform research using the XAFS, SXAFS, XANES techniques (D.C.Koningsberger and R.Prins, 1988) as well as the number of techniques from XIEES field(L.A.Bakaleinikov et all, 1992). The experiments may be carried out with registration of transmitted through the sample x-rays (to investigate bulk samples) or/and total electron yield (TEY) from the sample surface that gives the high (down to several atomic mono-layers in soft x-ray region) near surface sensitivity. The combination of these methods together give the possibility to obtain a quantitative information on elemental composition, chemical state, atomic structure for powder samples and solids, including non-crystalline materials (the long range order is not required). The optical design of spectrometer is made according to Johannesson true focusing schematics and presented on the Fig.1. Five stepping motors are used to maintain the focusing condition during the photon energy scan (crystal angle, crystal position along rail, sample goniometer rail angle, sample goniometer position along rail and sample goniometer angle relatively of rail). All movements can be done independently and simultaneously that speeds up the setting of photon energy and allows the using of crystals with different Rowland radil. At present six curved crystals with different d-values and one flat synthetic multilayer are installed on revolver-type monochromator. This arrangement allows the wide range of x-rays from 100 eV up to 25 keV to be obtained. Another 4 stepping motors set exit slit width, sample angle, channeltron position and x-ray detector position. The differential pumping allows to unite vacuum chambers of spectrometer and x-ray generator avoiding the absorption of soft x-rays on Be foil of a window and in atmosphere. Another feature of vacuum system is separation of walls of vacuum chamber (which are deformed by the atmospheric pressure) from optical elements of spectrometer. This warrantees that the optical elements are precisely positioned. The detecting system of the spectrometer consists of two proportional counters, one scintillating detector and one channeltron detector. First proportional counter can be used as I/sub 0/-detector in transmission mode or by measuring the fluorescence from exit slit edge. The last installation can be used to measure the reference data (that is necessary in XANES measurements), in this case the reference sample is installed on slit knife edge. The second proportional counter measures the intensity of x-rays transmitted through the sample. The scintillating detector is used in the same way but on the air for the hard x-rays and for alignment purposes. Total electron yield from the sample is measured by channeltron. The spectrometer is fully controlled by special software that gives the high flexibility and reliability in carrying out of the experiments. Fig.2 and fig.3 present the typical XAFS spectra measured with spectrometer.

  • PDF

DYNAMICS OF $tRNA*{val}$ MEASURED WITH A LONG-LIFETIME METAL-LIGAND COMPLEX

  • Kang, Jung-Sook
    • Journal of Photoscience
    • /
    • v.7 no.4
    • /
    • pp.155-159
    • /
    • 2000
  • [Ru(bpy)$_2$(dppz)]$^2$$^{+}$ (bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine)(RuBD), a long-lifetime metal-ligand complex displays photophysical properties including long lifetime, polarized emission, and very little background fluorescence. To further show the usefulness of this luminophore(RuBD) for probing nucleic acid dynamics, its intensity and anisotropy decays when bound to tRN $A^{val}$ were examined using frequency-domain fluorometry with a blue light-emitting diode(LED)as the modulated light source. Unexpectedly much longer mean lifetime was obtained at 4$^{\circ}C$(<$\tau$>=178.3 ns) as compared to at $25^{\circ}C$(<$\tau$>=117.0 ns), suggesting more favorable conformation of tRN $A^{val}$ for RuBD when intercalated at 4$^{\circ}C$. The anisotropy decay data showed longer rotational correlation times at 4$^{\circ}C$(52.7 and 13.0 ns) than at $25^{\circ}C$ (32.9 and 10.3 ns). The presence of two rotational correlation times suggests that RuBD reveals both local and overall rotational motion of tRN $A^{val}$. Due to long lifetime of RuBD and small size of tRN $A^{val}$, very low steady-state anisotropy values were observed, 0.048 and 0.036 at 4 and $25^{\circ}C$, respectively. However, a clear difference in the modulated anisotropy values was seen between 4 and $25^{\circ}C$. These results indicate that RuBD can be useful for studying hydrodynamics of small nucleic acids such as tRN $A^{val}$.^{val}$.>.$.>.

  • PDF

Thermoluminescence Properties of Elpasolite Scintillation Single Crystal (엘파소라이트 섬광형 단결정의 열형광 특성)

  • Kim, Sung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.492-497
    • /
    • 2012
  • In this paper, we determined the scintillation and thermoluminescence properties of $Cs_2NaCeBr_6$ elpasolite scintillation crystal. The emission spectrum of $Cs_2NaCeBr_6$ is located in the range of 300 ~ 450 nm, peaking at 377 nm and 400 nm. And, the fluorescence decay time of the crystal is composed two components. The fast component is 140 ns (94%), and the slow component is 880 ns (6%) of the crystal. The after-glow is caused by the electron and hole traps in the crystal lattices. We determined thermoluminescence parameters of the traps in the crystal. The determined activation energy(E), kinetic order and frequency factor of the traps are 0.67 eV, 1.71 and $2.51{\times}10^8s^{-1}$ respectively. In this crystal, re-combination rate is more dominant phenomenon than the re-trapping rate.

Synthesis and Evaluation of Variable Temperature-Electrical Resistance Materials Coated on Metallic Bipolar Plates (온도 의존성 가변 저항 발열체로 표면 처리된 금속 분리판 제조 및 평가)

  • Jung, Hye-Mi;Noh, Jung-Hun;Im, Se-Joon;Lee, Jong Hyun;Ahn, Byung Ki;Um, Sukkee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.73.1-73.1
    • /
    • 2010
  • For the successful cold starting of a fuel cell engine, either internal of external heat supply must be made to overcome the formation of ice from water below the freezing point of water. In the present study, switchable vanadium oxide compounds as variable temperature-electrical resistance materials onto the surface of flat metallic bipolar plates have been prepared by a dip-coating technique via an aqueous sol-gel method. Subsequently, the chemical composition and micro-structure of the polycrystalline solid thin films were analyzed by X-ray diffraction, X-ray fluorescence spectroscopy, and field emission scanning electron microscopy. In addition, it was carefully measured electrical resistance hysteresis loop over a temperature range from $-20^{\circ}C$ to $80^{\circ}C$ using the four-point probe method. The experimental results revealed that the thin films was mainly composed of Karelianite $V_2O_3$ which acts as negative temperature coefficient materials. Also, it was found that thermal dissipation rate of the vanadium oxide thin films partially satisfy about 50% saving of the substantial amount of energy required for ice melting at $-20^{\circ}C$. Moreover, electrical resistances of the vanadium-based materials converge on an extremely small value similar to that of pure flat metallic bipolar plates at higher temperature, i.e. $T{\geq}40^{\circ}C$. As a consequence, experimental studies proved that it is possible to apply the variable temperature-electrical resistance material based on vanadium oxides for the cold starting enhancement of a fuel cell vehicle and minimize parasitic power loss and eliminate any necessity for external equipment for heat supply in freezing conditions.

  • PDF

Synthesis and Characterization of Red Organic Fluorescent of Perylene Bisimide Derivatives (Perylene Bisimide 유도체의 적색 유기 형광체 합성 및 특성 연구)

  • Lee, Seung Min;Jeong, Yeon Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.577-582
    • /
    • 2017
  • The white light of a hybrid LED is obtained by using red and green organic fluorescent layers made of polymethylmethacrylate (PMMA) films, which function as color down-conversion layers of blue light-emitting diodes. In this research, we studied the fluorescence properties of a red organic fluorophore, employing perylene bisimide derivatives applicable to hybrid LEDs. The solubility, thermal stability, and luminous efficiency are important characteristics of organic fluorophores for use in hybrid LEDs. The perylene fluorescent compounds (1A and 1B) were prepared by the reaction of 4-bromophenol and 4-iodophenol with N,N'-bis(4-bromo-2,6-diisopropylphenyl)-1, 6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxyl diimide (1) in the presence of dimethyl formaldehyde (DMF) at $70^{\circ}C$. The synthesized derivatives were characterized by using $^1H-NMR$, FT-IR, UV/Vis absorption and PL spectra, and TGA analysis. Compounds 1A and 1B showed absorption and emission at 570 nm and 604 nm in the UV/Vis spectrum. We also documented favorable solubility and thermal stability characteristics of the perylene fluorophores in our work. Perylene fluorophore 1, with the 4-bromophenol substituent 1A, exhibited particularly good thermal stability and solubility in organic solvents.

Determination of terbutaline in human plasma by coupled column chromatography (커플드칼럼크로마토그래피에 의한 사람 혈장 중 테르부탈린의 정량)

  • Ko, Mi Young;Jeon, Sang-Seol;Kim, Kyeong Ho
    • Analytical Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.125-131
    • /
    • 2015
  • A method was developed and fully validated for the determination of terbutaline, a β2-receptor agonist, in human plasma. Plasma samples were prepared by solid-phase extraction with Sep-Pak silica, followed by high-performance liquid chromatography (HPLC). The terbutaline was pre-separated from the interfering components in plasma on a Luna C18 (2) column, and terbutaline and salbutamol as an internal standard were resolved and determined on a Luna Silica column. The two columns were connected by a switching valve equipped with silica pre-column. The pre-column was used to concentrate the terbutaline in the eluent from the C18 column before back-flushing onto the silica column with fluorescence detection at an excitation/emission wavelength of 276/306 nm. The method was shown to be specific by testing six different human plasma sources. Linearity was established for a concentration range of 0.4-20.0 ng/mL with a correlation coefficient of 0.9999. The lower limit of quantitation was 0.4 ng/mL with a precision of 10.1% as C.V.%.