• Title/Summary/Keyword: fluidized-bed biofilm reactor

Search Result 34, Processing Time 0.03 seconds

A study on the treatment of highly-emulsified oily wastewater by an inverse fluidized-bed biofilm reactor (역 유동층 생물막 반응기를 이용한 유분함유폐수 처리에 관한 연구)

  • 최윤찬;나영수
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.361-367
    • /
    • 1996
  • An inverse fluidized-bed biofilm reactor (IFBBR) was used for the treatment of highly-emulsified oily wastewater. When the concentration of biomass which was cultivated in the synthetic wastewater reached to 6000 mg/1, the oily wastewater was employed to the reactor with a input COD concentration range of 50 mg/1 to 1900 mg/l. Virtually the IFBBR showed a high stability during the long operation period although soma fluctuation was observed. The COD removal efficiency was maintained over 9% under the condition that organic loading rate should be controlled under the value of 1.5 kgCOD/$m^3$/day, and F/M ratio is 1.0 kgCOD/kgVSS/day at $22{\circ}C$ and HRT of 12 hrs. As increasing organic loading rates, the biomass concentration was decreased steadily with decreasing of biofilm dry density rather than biofilm thickness. Based on the experimental jesuits, it was suggested that the decrease in biofilm dry density was caused by a loss of biomass inside the biofilm.

  • PDF

Sewage Disposal by Different Structure of Fluidized Bed Biofilm Reactor (유동층 생물반응기의 구조변화에 따른 하수처리)

  • Park, Jong-Man;Lee, Jae-Yong;Kim, Chul-Kyoung;Koh, Chang-Woong;Kim, Nam-Ki
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.181-187
    • /
    • 2004
  • The purpose of this study is to investigate the biofilm reactors capable of doing high efficiency treatment. Vertical fluidized bed biofilm reactor(VFBBR) and spiral fluidized bed biofilm reactor(SFBBR) was used for their performence in biodegradation of artificial sewage. The factors influencing the efficiency of those reactors were compared with difference of physical condition. They had same size but different structure to gain access of its unique characteristics. When recycle solution with flow rate of 22 mL/min and artificial sewage with flow rate of 2~10 mL/min were fed into two reactors in aerobic state, the average $COD_{cr}$, removal rate for biodegradation of SFBBR was greater than VFBBR. After reactor feed sewage was constantly maintained as flow rate of 4 mL/min and the recycle solution were changed to 10~32 mL/min respectively, the average $COD_{cr}$ removal rate of artificial sewage in SFBBR was greater than VFBBR. In this experiment for addition of support media into two reactors SFBBR was 4.1% excellent than VFBBR. Above all, SFBBR excelled VFBBR in boidegradation of organic matter in sewage.

Effect of Hydraulic Loading on Biofilm Characteristics in an Inverse Fluidized Bed Biofilm Reactor (역 유동층 생물막 반응기에서 수리학적 부하가 생물막 성상에 미치는 영향)

  • 김동석;최윤찬
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.221-228
    • /
    • 1995
  • Stability of reactor and effect on biofilm characteristics were investigated by varying the hydraulic residence time in an inverse fluidized bed biofilm reactor(IFBBR). The SCOD removal efficiency was maintained above 90 % in the HRT range of 12hr to 2hr, but the TCOD removal efficiency was dropped down to 50% because of biomass detachment from overgrown bioparticles. The reactor was stably operated up to the conditions of HRT of 2hr and F/M ratio of 4.5kgCOD/$m^3$/day, but above the range there was an abrupt increase of filamentous microorganisms. The optimum biofilm thickness and the biofilm dry density in this experiment were shown as $200\mu\textrm{m}$ and $0.08 g/cm^3$, respectively. The substrate removal rate of this system was found as 1st order because the biofilm was maintained slightly thin by the increased hydraulic loading rate.

  • PDF

A Study on the characteristics of the bed porosity and organic wastewater treatment with the circulation velocity in the anaerobic fluidized bed biofilm reactorA Study on the characteristics of the bed porosity and organic wastewater treatment with the circulation velocity in the anaerobic fluidized bed biofilm reactor (혐기성 유동층 생물막 반응기에서 순환유속 증가에 따른 층공극률 및 유기성 폐수 처리특성에 관한 연구)

  • 김재우;안재동
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.3
    • /
    • pp.1.1-15
    • /
    • 1995
  • This study was performed to estimate the characteristics of the organic wastewater treatment and bed porosity with the circulation velocity in the anaerobic fluidized bed biofilm reactor. The results were as follows; 1. With Increasing circulation velocity the fluidized bed expanded smooth and with increasing initial particle volume the fluidized bed was increased. 2. With increasing circulation velocity the gasproduction was increased, but at 1.Scnt/sec of circulation velocity AFBBR showed the highest value of methane production rate per removed COD. Therefore, for the purpose of economical operation in AFBBR, 1.5cm/sec of circulation velocity was optimum 3. The microorganisms were colonized in the crevice of the media. 4. On fluidization, COD, VA,55 profiles with the reactor height were not showed. In conclusion, AFBBR suit the organic wastewater treatment's purpose, and at 1.5cm/sec of circulation velocity the system is economical in an energy Point of view.

  • PDF

A Study on Aerobic Fluidized-Bed Biofilm Reactor for Treating Industrial Wastewaters(III) -Mathematical model for organic removal- (산업폐수처리를 위한 호기성 생물막 유동층 반응기의 연구(III) -유기물 제거에 관한 수학적 모델-)

  • 안갑환;박상준;송승구
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.331-336
    • /
    • 1993
  • A mathematical model for organic removal efficiency was investigated in a fluidized bed biofilm reactor by changing the feed flow rate, the residence time and the recycle flow rate. In batch experiment, organic removal could be assumed as first order and an intrinsic first order rate constant(k1) was found $6.4{\times}^{-6}cm^3/mg{\cdot}sec$ at influent COD range of 3040 - 6620 mg/L. In continuous experiment, at the condition of the influent COD, 3040 mg/L, the superficial upflow velocity, 0.47 cm/sec, the biofilm thickness 336 ${\mu}m$ and the biofilm dry density 0.091 g/mL, the calculated COD removal efficiency from the mathematical model gave 60% which was very close to the observed value of 66 %. As the feed flow rate was increased, the COD removal efficiency was sharply decreased and at constant feed flow rate, the COD removal efficiency was decreased also as the residence time being decreased.

  • PDF

A Study on Biofilm Detachment in an IFBBR (역 유동층 생물막 반응기에서의 생물막 탈착에 관한 연구)

  • 김동석;박영식
    • Journal of Environmental Science International
    • /
    • v.3 no.3
    • /
    • pp.263-271
    • /
    • 1994
  • A detachment of biofilm was investigated in an inverse fluidized bed biofilm reactor(IFRBR). The biofilm thickness, 5 and the bioparticle density, Pm were decreased by the increase of Reynolds number, Re and the decrease of biomass concentration, h. The correlations were expressed as $\delta$=6l.6+16.33$b_c$-0.004Re and Ppd=0.3+0.027$b_c$- 2.93x$l0^{-5}$ no by multiple linear regression analysis method. Specific substrate removal rate, q was derived by F/M ratio and biofilm thickness as q=0.44.+0.82F/M-5.Ix10$-4^{$\delta$}$. Specific biofilm detachment rate, bds was influenced by FIM ratio and Reynolds number as $b_{ds}$=-0.26+0.26F/M+ 2.17$\times$$10^{-4}$Re. Specific biofilm deachment rate in an IFBBR was higher than that in a FBRR(fluidized bed biofilm reactor) because of the friction between air bubble and the bioparticles.

  • PDF

Hydraulic Shock of Apartment Sewage in Inverse Fluidized Bed Biofilm Reactor (역유동층 생물막 반응기에서 수리학적 충격에 따른 아파트 오수의 처리)

  • 박영식;나영수
    • Journal of Environmental Science International
    • /
    • v.6 no.1
    • /
    • pp.17-24
    • /
    • 1997
  • The objective of this study was to examine the transient response to hydraulic shocks in an Inverse fluidized bed bioflm reactor(IFBBR) for the treatment of apartment sewage. The hydraulic shock experiments, when the system were reached at steady state with each HRT 12, 7, and 4hr, were conducted by chancing twice HRT per day during 3days. The SCOD, SS, DO, and pH of the effluent stream were increased with hydraulic shock, but easily recovered to the steady state of pre-hydraulic shock condition. In spite of hydraulic shock, there were not much variation of biomass concentration, biofilm thickness and biofilm dry density.

  • PDF

Nitrate Removal by Immobilized Denitrifying Bacteria in Recirculating Aquaculture System (순환여과식 양식 시스템에 있어서의 고정화 탈진균에 의한 질산염 제거)

  • 김상희;김필균;김중균
    • Journal of Life Science
    • /
    • v.9 no.6
    • /
    • pp.698-703
    • /
    • 1999
  • For the nitrate removal in recirculating aquaculture system, a denitrifying bacterium, Pseudomonas fluorescens, was isolated from municipal sewage and the cells were immobilized in modified-polyvinly alchol (PVA) gel beads. The immobilized cells in both the fixed-and fluidized-bed reactors showed 98% of denitrification efficiency with 6hr HRT, and the removal efficiency of total organic carbon (TOC) was above 90%. Form scanning electron microscopy (SEM) observation, it was known that biofilm formed in fixed-bed reactor was thicker than that formed in fluidized-bed reactor as operation time passed.

  • PDF

Effect of the Liquid Circulation Velocity on the Biofilm Development in an IFBBR (역 유동층 생물막 반응기에서 액체순환속도가 생물막에 미치는 영향)

  • 김동석;윤준영
    • Journal of Environmental Science International
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 1994
  • Effect of the liquid circulation velocity on the biofilm development was investigated in an inverse fluidized bed biofilm reactor(IFBBR). To observe the effect of the influent COD concentration on biofilm simultaneously, the influent COD value was adjusted to 1000mg/1 f for 1st reactor, and 2500mg/l for 2nd reactor. The liquid circulation velocity was adjusted by controlling the initial liquid height. As the liquid circulation velocity was decreased, the settling amount of biomass was increased and the amount of effluent biomass was decreased. Since the friction of liquid was decreased by the decrease of liquid circulation velocity, the biofilm thickness was increased and the biofilm dry density was decreased. In the 1st reactor the SCOD removal efficiency was constant regardless of the variation of the liquid circulation velocity, but it was increased by the decrease of the liquid circulation velocity because of more biomass population in 2nd reactor.

  • PDF

Simultaneous Nitrification and Denitrification in a Fluidized Biofilm Reactor with a Hollow Fiber Double Layer Biofilm Media (이중층 중공사 생물막 담체를 이용한 유동층 생물막 반응기에서의 동시 질산화와 탈질)

  • 이수철;이현용;김동진
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.514-520
    • /
    • 2000
  • Simultaneous nitrification and denitrification of ammonia and organic compounds-containing wastewater were performed in a fluidized bed biofilm reactor with polysulfone(PS) hollow fiber as a double layer biomass carrier. The PS hollow fiber fragment has both aerobic and anoxic environments for the nitrifiaction and denitrification at the shell and lumen-side respectively. The reactor system showed about 80% nitrification efficiency stably throughout the ammonia load conditions applied in the experiment. Denitrification efficiency depended on organic load and C/N ratio. High free ammonia concentration and low dissolved oxygen resulted in nitrite accumulation which leads to enhance organic carbon efficiency in denitrification when compared to nitrate denitrification. The simultaneous nitrification and denitrification reactor system has an economic advantages in reduced chemical cost of organic carbon for denitrification as well as compact reactor configuration.

  • PDF