• Title/Summary/Keyword: fluid property

Search Result 335, Processing Time 0.025 seconds

Micro PIV Measurement of Two-Fluid Flow with Different Refraction Indices (미소입자영상유속계를 이용한 굴절률이 다른 두 유체 유동 측정)

  • Kim, Byoung-Jae;Liu, Ying Zheng;Sung, Hyung-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.107-114
    • /
    • 2003
  • The influence of property difference in refraction index on micro PIV measurement of two-fluid flow in a microchannel was analyzed. The difference of measurement planes in two fluids would bring misunderstanding of the physics. The objective-imaging system for two-fluid flow measurement was presented, and the condition for measurement of valid velocity profile across two-fluid interface was derived. A micro PIV experimental system was set up to measure two-fluid flow inside a Y-shape microchannel. Under the conditions, three cases of two-fluid flow of glycerol solutions at different concentration (${\phi}$), e.g., (${\phi}=0\;and\;{\phi}=0.2,\;{\phi}=0.1\;and\;{\phi}=0.5,\;{\phi}=0\;and\;{\phi}=0.6$, were measured. Close agreement of experimental and numerical results was found.

  • PDF

Spray Characteristics according to Fluid Properties and Electric Parameters of Electrospray (정전분무의 유체 물성치와 정전 매개변수 따른 분무특성)

  • Kim, JiYeop;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.81-88
    • /
    • 2020
  • Electrospray is used in various industries because it can produce continuous and uniform droplets. However, it is difficult to find optimal spraying condition due to lack of data in various conditions. In this study, various conditions were divided into electric parameters and fluid property. The electric parameters set Nozzle to Substrate(NTS), nozzle diameters and the fluid property set viscosity and conductivity as conditions. In this study, it observes spray patterns, Sauter Mean Diameter(SMD) according to conditions. As a result, fluid properties had a greater effect on the cone-Jet mode than on the nozzle diameter, NTS, and flowrate. All of solutions have Stable cone-jet mode at voltage of 8.5 kV, NTS of 20 mm and nozzle diameter of 0.2 mm. SMD has 27% different depending on viscosity and conductivity. The increased flowrate and viscosity are rising break-up length and thickening jet also jet is thinned by increased conductivity. Experiments have confirmed that the jet is thickened by increased flowrate and viscosity, and that the jet is thinned by conductivity.

Experimental study of natural convection for magnetic fluids in annular pipes (이중원관내 자성유체의 자연대류에 관한 실험적 연구)

  • Park, Joung-Woo;Lee, Jun-Hee;Seo, Lee-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.191-195
    • /
    • 2001
  • The applications of magnetic fluid can be normally made by 1) using changes of a property of matter caused by applied magnetic field; 2) preserving magnetic fluid at a certain position or in a magnetic fluid keeping the body in a floating condition; 3) controlling the flow of magnetic fluid by means of magnetic field. However, these are usually made by using their methods together. In this study, the natural convection flow of a magnetic fluid in annular pipes is experimentally analyzed. High temperature is kept constantly inside of a circular pipe of experimental model, on the other hand, low temperature is kept constantly outside of it. In experiments, several cases are carried out in order to clarify the fluence of direction and intensity of magnetic fields on the natural convection of magnetic fluid. Therefore magnetic fields are applied in various intensity and up and down directions by permanent magnets.

  • PDF

Dynamic Characteristics Analysis of A Magneto-Rheological Damper (MR 댐퍼의 동특성 해석)

  • Jeong, Hee-Kyung;Baek, Woon-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.222-227
    • /
    • 2002
  • MR(Magneto-rheological) fluid is smart fluid that can change its characteristics then magnetic fields are applied. Recently, many researches have been performed on this MR fluid for the application in a vareity of areas including automobile shock absorbers. This paper describes the design procedure of a MR damper and the analysis results of its dynamic characteristics. MR fluid in the magnetic field shows initial yield shear stress and increasing resistive viscosity with final saturation thereafter. Herschel-Bulkley model is used to simulate the flow characteristics of MR fluid and magnetic analysis is used to identify the magnetic property of the MR fluid in the orifice of the damper. The dynamic characteristics of the damper was predicted and compared with the experimental results for typical sinusoidal excitations.

  • PDF

Torsional Vibration Damper Using Magneto-Rheological Fluid (MR 유체를 이용한 비틀림진동 감쇠기)

  • 안영공;신동춘;양보석;김동조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.313-317
    • /
    • 2001
  • Magneto-Rheological fluid (MR fluid) is known as a class of functional fluid with controllable apparent viscosity of the fluid by the applied magnetic field strength. Extensive researches with the functional fluids have been done on applications of the fluid to mechanical components such as suspension, absorber, engine mount, clutch, break, valve, etc. In this study, a new torsional damper using MR fluid is proposed, and the response property of the damper was theoretically investigated. The present damper is quit effective for reducing the driveline vibration in a wide range of the engine speed.

  • PDF

Dynamic Properties of Squeeze Type Mount Using MR Fluid (MR유체를 이용한 스퀴즈모드 타입 마운트의 동특성)

  • Ahn, Young-Kong;Yang, Bo-Suk;Ha, Jong-Yong;Kim, Dong-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.349.1-349
    • /
    • 2002
  • This paper presents investigation of damping characteristics of squeeze mode type MR mount experimently. The MR mount proposed in the study has variable damping characteristics according to the applied magnetic field strength. Impact and force excitation tests were performed. The dynamic property of the mount using MR fluid was compared with that of the mount using conventional oil. (omitted)

  • PDF

A Study on Dyeing Properties of Nylon 6 Fabrics in Supercritical Fluid Dyeing System (I): Depending on Temperature and Pressure (Nylon 6 섬유의 초임계 유체 염색특성 연구 (I): 온도, 압력의 변화)

  • Ko, Eunhee;Lee, Inyeol;Kim, Changil
    • Textile Coloration and Finishing
    • /
    • v.32 no.2
    • /
    • pp.80-88
    • /
    • 2020
  • Supercritical fluid dyeing is a new alternative to the conventional aqueous process because of its environmental benefits. In this study, dyeing properties of Nylon 6 fabrics were investigated depending on dyeing temperature and pressure in supercritical CO2 fluid dyeing system. In order to select the optimal condition for supercritical fluid dyeing of Nylon 6 fabrics, dyeing temperature and pressure were varied from 100, 110, 120℃, 200, 230, 260bar, respectively. The results of K/S values and levelling properties showed that the optimal dyeing condition for Nylon 6 fabrics was 110℃ and 230bar in the supercritical CO2 fluid dyeing system. The washing fastness ratings of the dyed Nylon 6 fabrics under supercritical medium were good for both fading and staining except for staining on nylon.

Numerical Prediction of Brake Fluid Temperature Considering Materials of Piston During Braking (제동시 피스톤 소재를 고려한 브레이크 오일 온도의 수치적 예측)

  • 김수태;김진한;김주신
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.445-450
    • /
    • 2004
  • Recently, many studies have been performed and good results have been reported in literature on the prediction of the brake disk temperature. However, study on the brake fluid temperature is rarely found despite of its importance. In this study, brake fluid temperature is predicted according to material property of brake piston. For the analysis, a typical disk-pad brake system is modeled including the brake disk, pad, caliper, piston and brake fluid. Vehicle deceleration, weight distribution by deceleration, disc-pad heat division and the cooling of brake components are considered in the analysis of heat transfer. Unsteady-state temperature distribution are analyzed by using the finite element method and numerical results are compared with the vehicle test data

  • PDF

Investigation of Polishing Characteristics of Fused Silica Glass Using MR Fluid Jet Polishing (MR Fluid Jet Polishing 시스템에 의한 Fused Silica Glass 연마특성 고찰)

  • Lee, Jung-Won;Cho, Yong-Kyu;Cho, Myeong-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.761-766
    • /
    • 2012
  • Abrasive fluid jet polishing processes have been used for the polishing of optical surfaces with complex shapes. However, unstable and unpredictable polishing spots can be generated due to the fundamental property of an abrasive fluid jet that it begins to lose its coherence as the jet exits a nozzle. To solve such problems, MR fluid jet polishing has been suggested using a mixture of abrasives and MR fluid whose flow properties can be readily changed according to imposed magnetic field intensity. The MR fluid jet can be stabilized by imposed magnetic fields, thus it can remain collimated and coherent before it impinges upon the workpiece surface. In this study, MR fluid jet polishing characteristics of fused silica glass were investigated according to injection time and magnetic field intensity variations. Material removal rates and 3D profiles of the generated polishing spots were investigated. From the results, it can be confirmed that the developed MR fluid polishing system can be applied for stable and predictable precise polishing of optical parts.

Free Vibration Analysis of Perforated Plate Submerged in Fluid

  • Jhung, Myung-Jo;Jo, Jong-Chull;Jeong, Kyeong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1323-1338
    • /
    • 2006
  • An analytical method to estimate the coupled frequencies of the circular plate submerged in fluid is developed using the finite Fourier-Bessel series expansion and Rayleigh-Ritz method. To verify the validity of the analytical method developed, finite element method is used and the frequency comparisons between them are found to be in good agreement. For the perforated plate submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the plate and the fluid at the same time. This necessitates the use of solid plate with equivalent material properties. Unfortunately the effective elastic constants suggested by the ASME code are found to be not valid for the modal analysis. Therefore in this study the equivalent material properties of perforated plate are suggested by performing several finite element analyses with respect to the ligament efficiencies.