• Title/Summary/Keyword: fluid pressure

Search Result 4,319, Processing Time 0.032 seconds

Study on Vibration Induced by Fluid at a Water Pressure Reducing Valve through Structure-Fluid Coupled Analysis (구조-유체 연성해석을 통한 수도용 감압밸브에서의 유체유발진동에 관한 연구)

  • Park, Woo-Cheul;Lee, Joong-Kuen;Kim, Il-Gyoum;Park, Yong-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4371-4377
    • /
    • 2012
  • In this paper, the structure-fluid coupled analysis is carried out in order to examine the cause of the vibration induced by fluid in the pressure-reducing valves for water. It is confirmed that there is the noise at the area of low frequency of 250Hz by measuring noise at pressure reducing valve. The flow analysis is performed by the commercial software ANSYS/CFX. The flow velocity of about 40 m/s is formed by nozzle effect, and so negative pressure is happened in the pressure reducing valve. The structure analysis is carried out with the load condition of pressure distribution by flow formed in valve. The rubber material at disk is deformed to the extent of closing up flow passage. It is confirmed that the disc deformation which is occurred repeatedly is due to noise and vibration at the pressure reducing valve.

Fluid-Structure Interaction Analysis of Pressure Pulsation in a Suction Pipe of Compressor (압축기 흡입배관 압력 맥동의 유체-구조 연성 해석)

  • Oh, Han-eum;Jeong, Weui-Bong;Ahn, Se-Jin;Kim, Min-sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.779-780
    • /
    • 2014
  • This paper dealt with numerical estimation of pressure pulsation of the refrigerant in a suction pipe of the compressor. To evaluate the effect of reduction of pressure pulsation, a pipe system with tube was simulated using F.S.I.(Fluid-structure interaction) analysis. A commercial program was used for calculating behavior of pressure. The numerical simulation for pressure ratio of before and after going though internal structure were carried out. As a result, it was verified that the pressure after passing structure is less than the pressure before passing internal structure depending on the longitudinal frequency of structure.

  • PDF

Borehole stability analysis in oil and gas drilling in undrained condition

  • Wei, Jian-Guang;Yan, Chuan-Liang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.553-567
    • /
    • 2014
  • Borehole instability during drilling process occurs frequently when drilling through shale formation. When a borehole is drilled in shale formation, the low permeability leads to an undrained loading condition. The pore pressure in the compressed area near the borehole may be higher than the initial pore pressure. However, the excess pore pressure caused by stress concentration was not considered in traditional borehole stability models. In this study, the calculation model of excess pore pressure induced by drilling was obtained with the introduction of Henkel's excess pore pressure theory. Combined with Mohr-Coulumb strength criterion, the calculation model of collapse pressure of shale in undrained condition is obtained. Furthermore, the variation of excess pore pressure and effective stress on the borehole wall is analyzed, and the influence of Skempton's pore pressure parameter on collapse pressure is also analyzed. The excess pore pressure decreases with the increasing of drilling fluid density; the excess pore pressure and collapse pressure both increase with the increasing of Skempton's pore pressure parameter. The study results provide a reference for determining drilling fluid density when drilling in shale formation.

Acoustic Interface Element on Nonconformal Finite Element Mesh for Fluid-Structure Interaction Problem (비적합 유한요소망에 적용가능한 유체-구조물 연결 요소)

  • Cho, Jeong-Rae;Lee, Jin Ho;Cho, Keunhee;Yoon, Hyejin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.163-170
    • /
    • 2023
  • In the fluid-structure interaction analysis, the finite element formulation is performed for the wave equation for dynamic fluid pressure, and the dynamic pressure is defined as a degree of freedom at the fluid nodes. Therefore, to connect the fluid to the structure, it is necessary to connect the degree of freedom of fluid dynamic pressure and the degree of freedom of structure displacement through an interface element derived from the relationship between dynamic pressure and displacement. The previously proposed fluid-structure interface elements use conformal finite element meshes in which the fluid and structure match. However, it is challenging to construct conformal meshes when complex models, such as water purification plants and wastewater treatment facilities, are models. Therefore, to increase modeling convenience, a method is required to model the fluid and structure domains by independent finite element meshes and then connect them. In this study, two fluid-structure interface elements, one based on constraints and the other based on the integration of nonsmooth functions, are proposed in nonconformal finite element meshes for structures and fluids, and their accuracy is verified.

The Effect of High Pressure Chamber's Shape on the Characteristics of Annular Jet Pump (고압실 형상에 따른 환형 제트펌프의 특성)

  • Kim, Myung Gwan;Kwon, Oh Boong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.75-81
    • /
    • 2000
  • Experimental studies on the characteristics of annular jet pump were carried out in this paper. The effects of high pressure chamber on the characteristics of annular jet pump were sought in this paper. Experiments were done for three shapes of high pressure chamber, and for several lengths of the high pressure chamber. Three types of the high pressure chamber's entrances($90^{\circ}$ single inflow, $45^{\circ}$ single inflow, and $45^{\circ}$ double inflow) were tested. Water was used for both the primary fluid and secondary fluid. The results obtained in this study are as follows; $45^{\circ}$ double inflow type is the most effective among the tested three types of the high pressure chamber's entrances. The efficiency of jet pump with 400mm of high pressure chamber length is the highest among the chamber lengths tested in this study, thus indicating appropriate chamber length is required to get an efficient jet pump.

  • PDF

FLOW OF DENTINAL FLUID THROUGH CAT DENTINAL TUBULES IN VIVO (IN VIVO에서 고양이 상아세관을 통한 상아세관액의 흐름)

  • Son, Ho-Hyun;Park, Soo-Joung;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.342-350
    • /
    • 1995
  • To determine the factors which affect the flow of dentinal fluid through cat dentinal tubules in vivo, the flow of fluid was measured by observing the movement of the fat droplets of dilute milk in a glass capillary with a microscope connected to the monitor. After measuring the exposed area of dentin, hydraulic conductances of dentin were calculated. The mean pressure which stoped the outward flow of dentinal fluid was 9.5mmHg. The hydraulic conductance of dentin under the condition of pulp exposed was increased by 21 % from that under the condition of dentin exposed. Under the conditions of pulp cut and pulp removed, the hydraulic conductances of dentin were increased by 22 % and 31 % respectively from that under the condition of dentin exposed. These results show that the direction and rate of dentinal fluid flow in cat dentin is affected mainly by the hydrostatic pressure of interstitial fluid of pulp tissue in the state of low compliance. Both of the osmotic effect produced by the protein constituents of interstitial fluid across the odontoblast tell layer and the change of interstitial fluid pressure produced by the state of the microcirculation of the pulp also affect the direction and rate of dentinal fluid in some degree.

  • PDF

A Study on the MR Cylinder with Built-in alves (밸브 내장형 MR 실린더에 관한 연구)

  • Song Joo-Young;Ahn Kyoung-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.130-136
    • /
    • 2005
  • A new MR cylinder with built-in valves using MR fluid (MR valve) is suggested and fabricated fur fluid control systems. The MR fluid is a newly developed functional fluid whose obvious viscosity is controlled by the applied magnetic field intensity. The MR cylinder is composed of cylinder with small clearance and piston with electromagnet. The differential pressure is controlled by the applied magnetic field intensity. It has the characteristics of simple, compact and reliable structure. The size of MR cylinder and piston has $\varphi30mm\times300mm$ and $\varphi28.5mm\times120mm$ in face size, respectively and 0.8mm in gap length. Through experiments, it was found that the differential pressure is controlled by the applied magnetic field intensity under little influence of the flow rate, which corresponds to a pressure control valve. The differential pressure of 0.47MPa was obtained with the input current of 1.5A. The rising time was 2.3s in step response of a manipulator using the MR cylinder. The effectiveness of the MR cylinder was also demonstrated through the position control.

Numerical simulation of the flow in pipes with numerical models

  • Gao, Hongjie;Li, Xinyu;Nezhad, Abdolreza Hooshmandi;Behshad, Amir
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.523-527
    • /
    • 2022
  • The objective of this study is to simulate the flow in pipes with various boundary conditions. Free-pressure fluid model, is used in the pipe based on Navier-Stokes equation. The models are solved by using the numerical method. A problem called "stability of pipes" is used in order to compare frequency and critical fluid velocity. When the initial conditions of problem satisfied the instability conditions, the free-pressure model could accurately predict discontinuities in the solution field. Employing nonlinear strains-displacements, stress-strain energy method the governing equations were derived using Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The results of this paper are analyzed by hyperbolic numerical method. Results show that the level of numerical diffusion in the solution field and the range of well-posedness are two important criteria for selecting the two-fluid models. The solutions for predicting the flow variables is approximately equal to the two-pressure model 2. Therefore, the predicted pressure changes profile in the two-pressure model is more consistent with actual physics. Therefore, in numerical modeling of gas-liquid two-phase flows in the vertical pipe, the present model can be applied.

Performance Evaluation of High Pressure and High Pressure Drop Control Valve for Offshore Plants (해양플랜트용 고압·고차압 제어밸브의 성능 평가)

  • Kim, Kyuchul;Lee, Chiwoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.767-773
    • /
    • 2013
  • A high-pressure, high-pressure drop control valve, which transforms the power transfer of a system by reducing the inlet pressure of 345bartothe outlet pressure of 112bar, is a fundamental component in an offshore plant process. With the increasingly growing market share of the maritime industry, this valve has been expected to be a high-value-added product. This study not only analyzes the relation between pressure drop and fluid velocity in a trim by using fluid analysis, but also examines the possibility of cavitation in a valve in addition to the plot for the extension of lifespan. Based on the analysis results, the design and production method of the valve are established, and accordingly, performance evaluation is carried out. It is demonstrated that the pressure drop from 345bar to 112bar is more feasible in the presence of the trim, which can induce a continuous and diminutive pressure drop in order to prevent cavitation in a high-pressure drop control valve. Furthermore, despite the fluid velocity near a seatring being found to be over 30m/s, the lifespan of the valve is determined to be adequate considering the operation condition of a prototype valve of 80%.

A study on the novel linear actuator using MR fluid

  • Song, Joo-Young;Ahn, Kyoung-Kwan;Ahn, Young-Kong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.296-300
    • /
    • 2004
  • A new MR cylinder with built-in valves using MR fluid (MR valve) is proposed for fluid power control systems. The MR or Magneto-Rheololgical fluid is a newly developed functional fluid whose obvious viscosity is controlled by the applied magnetic field intensity. The MR cylinder is composed of cylinder with small clearance and piston with electromagnet. The differential pressure is controlled by the applied magnetic field intensity. It has the characteristics of simple, compact and reliable structure. The size of MR cylinder and piston has ${\varphi}$60mm${\times}$259mm and ${\varphi}$58mm${\times}$136.5mm in face size respectively and 0.8mm in gap length. Through experiments on the static characteristics, it is found that the differential pressure is controlled by the applied magnetic field intensity under little influence of the flow rate, which corresponds to a pressure control valve. Effectiveness of the MR cylinder is demonstrated through the position control of one link MR manipulator.

  • PDF