• 제목/요약/키워드: fluid mixing

검색결과 558건 처리시간 0.023초

The relevance of turbulent mixing in estuarine numerical models for two-layer shallow water flow

  • Krvavica, Nino;Kozar, Ivica;Ozanic, Nevenka
    • Coupled systems mechanics
    • /
    • 제7권1호
    • /
    • pp.95-109
    • /
    • 2018
  • The relevance of turbulent mixing in estuarine numerical models for stratified two-layer shallow water flows is analysed in this paper. A one-dimensional numerical model was developed for this purpose by extending an immiscible two-layer model with an additional source term, which accounts for turbulent mixing effects, namely the entrainment of fluid from the lower to the upper layer. The entrainment rate is quantified by an empirical equation as a function of the bulk Richardson number. A finite volume method based on an approximated Roe solver was used to solve the governing coupled system of partial differential equations. A comparison of numerical results with and without entrainment is presented to illustrate the influence of entrainment on both the salt-water intrusion length and lower layer dynamics. Furthermore, one example is given to demonstrate how entrainment terms may help to stabilize the numerical scheme and prevent a possible loss of hyperbolicity. Finally, the model with entrainment is validated by comparing the numerical results to field measurements.

수치해석을 이용한 패시브 마이크로 믹서의 성능평가 (Performance Assessment of Passive Micromixer using Numerical Analysis)

  • 이정익;김철규
    • 한국융합학회논문지
    • /
    • 제9권10호
    • /
    • pp.237-242
    • /
    • 2018
  • 마이크로 믹서는 랩-온-어-칩이나 마이크로 유체 기기의 하나의 구성품으로 두 가지의 화학 물질을 혼합(융합)하는 장치이다. 본 연구는 다양한 형상의 패시브 마이크로 믹서의 성능을 평가하는 것을 목적으로 한다. 다양한 형상의 마이크로 믹서는 총 6가지의 형상을 비교하였고, 서로 동일한 수력 직경을 갖도록 3차원 모델링하였다. 내부 혼합 유동을 전산모사하기 위해여 상용 유동해석 프로그램인 ANSYS Fluent를 사용하였다. 수치해석 방법은 본 논문에 자세하게 기술하였다. 마이크로 믹서의 성능 평가는 혼합 지수와 압력 강하로 비교하였고, 결론적으로 CDM-8T은 합리적인 혼합성능과 상대적으로 낮은 압력 강하를 갖는 것으로 나타났다.

Computational Study of the Axisymmetric, Supersonic Ejector-Diffuser Systems

  • Kim, Heuy-Dong;Lee, Young-Ki;Seo, Tae-Won;Raghunathan, Srinivasan
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.520-524
    • /
    • 2000
  • A ejector system is one of the fluid machinery, which has been mainly used as an exhaust pump or a vacuum pump. The ejector system has often been pointed out to have only a limited efficiency because it is driven by pure shear action and the mixing action between primary and secondary streams. In the present work, numerical simulations were conducted to investigate the effects of the geometry and the mass flow ratio of supersonic ejector-diffuser systems on their mixing performance. A fully implicit finite volume scheme was applied to solve the axisymmetric Navier-Stokes equations, and the standard ${\kappa}-{\varepsilon}$ turbulence model was used to close the governing equations. The flow fields of the supersonic ejector-diffuser systems were investigated by changing the ejector throat area ratio and the mass flow ratio. The existence of the second throat strongly affected the shock wave structure inside the mixing tube as well as the spreading of the under-expanded jet discharging from the primary nozzle, and served to enhance the mixing performance.

  • PDF

진공청소기용 저소음 터보팬 내부 유동 해석 (Flow Analysis of a Low-Noise Turbo Fan for a Vacuum Cleaner)

  • 이기춘;김창준;허남건;전완호
    • 한국유체기계학회 논문집
    • /
    • 제6권4호
    • /
    • pp.14-20
    • /
    • 2003
  • In this study an analysis of the flow characteristics in three types of turbo-fans for a vacuum cleaner was performed by using CFD. The characteristics of three models calculated for various rotating speed for flow rates are obtained and compared with measured data. The mixing plane approach is applied to compute the flow between impeller and diffuser. The results show that the model that is modified to reduce fan noise gives stable flow characteristics in operating range than the original model, with both models show similar performance characteristics at the range of high flow rate. Since in the modified model it takes much longer for an impeller blade to pass a diffuser blade than in the original model, and the peak pressure at BPF can be relieved, it is anticipated that the modified model give much lower noise level with similar performance than the original one, which remains to be verified by unsteady computation and measurements. The good agreement between the predictions and measurement results confirms the validity of this study.

액체로켓용 터보펌프 인듀서/임펠러 상호작용에 대한 연구 (Numerical Studies on the Inducer/Impeller Interaction Liquid Rocket Engine Turbopump)

  • 최창호;김진한
    • 한국유체기계학회 논문집
    • /
    • 제6권4호
    • /
    • pp.50-57
    • /
    • 2003
  • The hydraulic performance analysis of a turbopump with an inducer for a liquid rocket engine was performed using three-dimensional Navier-Stokes equations. A simple mixing-plane method and a full interaction method were used to simulate inducer/impeller interaction. Two methods show almost similar results due to the weak interaction between the inducer and impeller since the inducer outlet blade angle is lather small. But, when the inducer and the impeller are closely spaced near the shroud region, flow angles at the impeller inlet show different results between two methods. Thus, the full interaction method predicts about $2\%$ higher pump performance than the mixing-plane method. And the effects of prewhirl at the impeller inlet are also investigated. As the inlet flow angle is increased, the head rise and the efficiency are decreased. The computational results are compared with measured ones. The computational results at the design point show good agreements with experimental data, however under-predicts the head rise at high mass flow rates compared to the experiment.

탠덤 디퓨저의 상대 위치에 따른 원심압축기 성능 예측 (Numerical Analysis on the Performance Prediction of a Centrifugal Compressor with Relative Positions of Tandem Diffuser Rows)

  • 노준구;김진한
    • 한국유체기계학회 논문집
    • /
    • 제7권2호
    • /
    • pp.27-34
    • /
    • 2004
  • The performance of a centrifugal compressor composed of an impeller, tandem diffuser rows and axial guide vanes has been predicted numerically and compared with available experimental results on its design rotational speed. The pitchwise-averaged mixing plane method was employed for the boundaries between rotor and stator to obtain steady state solutions. The overall characteristics showed difference according to the relative positions of tandem diffuser rows while the characteristics of impeller showed almost identical result. The numerical results agree with the measured data in respect of their tendency. It turned out that $0\%$ of relative positions is the worst case in terms of static pressure recovery and efficiency. According to the experimental results, some pressure fluctuations and malfunction of the compressor were observed for $75\%$ case. However, this numerical calculation using mixing plane method did not capture any of those phenomena. Thus, unsteady flow calculation should be performed to investigate the stability of the compressor caused by different diffuser configuration.

분지관 혼합기의 난류혼합에 대한 유동가시화 연구 (II) (Flow Visualization Study on the Turbulent Mixing of Two Fluid Streams(II))

  • 김경천;신대식
    • 대한기계학회논문집B
    • /
    • 제22권7호
    • /
    • pp.1013-1021
    • /
    • 1998
  • Various vortical structures are investigated by using three kinds of flow visualization methods in branch pipe flows. There are two typical flow patterns when a jet from the branch pipe with various angles is injected to the main pipe cross flow. The velocity range of cross flow of the main pipe is 0.2 m/s ~ 1.2 m/s and the corresponding Reynolds number, R$_{p}$ is of the range 1.5 * 10$^{3}$ ~ 9.02 * 10$^{3}$. The velocity ratio(R), jet velocity/cross flow velocity, is chosen from 1.3 to 4. The subsequent behavior and development of the ring vortices which are created at the jet boundary mainly depend on the velocity ratio. An empirical relation for the shedding frequency of the ring vortices is derived. It is also found that there are two different vortex shedding mechanism in the mixing of two fluid streams.s.

유사차원해석 모델을 이용한 초희박 조건에서의 가솔린 직분사 엔진 연소 및 배기 예측 (Quasi-dimensional Analysis of Combustion and Emissions in a Stratified GDI Engine under Ultra-lean Conditions)

  • 이재서;허강열;권혁모;박재인
    • 한국자동차공학회논문집
    • /
    • 제23권4호
    • /
    • pp.402-409
    • /
    • 2015
  • In this study a quasi-dimensional model is developed to predict the combustion process and emissions of a GDI engine under ultra-lean conditions. Combustion of a GDI engine condition is modeled as two simultaneous processes to consider significant fuel stratification. The first process is premixed flame propagation described as burning in a hemispherically propagating flame. The second is diffusion-controlled combustion modeled as mixing of multiple spray zones in the burned gas region. Mixing is an important factor in ultra-lean conditions leaving stratified mixture of developing sprays behind the propagating premixed flame. Sheet breakup and Hiroyasu models are applied to predict the velocity of a hollow cone spray. Validation is performed against measured pressures and NOx and CO emissions at different load and rpm conditions in the test engine.

공기구동 이젝터의 노즐 형상과 위치 변화에 따른 성능 특성 (Performance Characteristics of Air Driven Ejector According to the Position Changes and the Shape of Driving Nozzle)

  • 지명국;김필환;박기태;토니우토모;정한식;정효민
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.550-556
    • /
    • 2008
  • The aim of this research is to analyze the influence of motive pressure, driving nozzle position and nozzle throat ratio on the performance of ejector. The experiment was conducted in the variation of motive pressure of 0.196, 0.294, 0.392 and 0.490MPa respectively. The position of driving nozzle was varied in difference locations according to mixing tube diameter(0.5d, 1d, 2d, 3d, 4.15d, 5d and 6d). The experimental results show when the nozzle outlet is located at 3d, the flow characteristics change abruptly. It is shown that the suction flow rate and pressure lift ratio of ejector is influenced by the driving nozzle position. At nozzle position location of the Id of mixing tube diameter the performance of ejector gives the best performance.

선회수와 리세스 길이가 초임계상태 케로신/액체산소 이중 와류 동축형 분사기의 화염구조에 미치는 영향 해석 (Effects of Swirl number and Recess length on Flame Structure of Supercritical Kerosene/LOx Double Swirl Coaxial Injector)

  • 박상운;김태훈;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.33-35
    • /
    • 2012
  • This study has been mainly motivated to numerically model the supercritical mixing and combustion processes encountered in the liquid propellant rocket engines. In the present approach, turbulence is represented by the extended k-e model. To account for the real fluid effects, the propellant mixture properties are calculated by using generalized cubic equation of state. In order to realistically represent the turbulence-chemistry interaction in the turbulent nonpremixed flames, the flamelet approach based on the real fluid flamelet library has been adopted. Based on numerical results, the detailed discussions are made for the effects of swirl number on flame structure of supercritical kerosene/LOx double swirl coaxial injector.

  • PDF