• Title/Summary/Keyword: fluid mechanics

Search Result 558, Processing Time 0.024 seconds

Thickness Effect on the Structural Durability of a Bileaflet Mechanical Heart Valve

  • Kwon, Young-Joo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.5-12
    • /
    • 2003
  • This paper discusses about the thickness effects on the structural durability of a bileaflet mechanical heart valve (MHV). In the study on the design and the mechanical characteristics of a bileaflet mechanical heart valve, the fluid mechanics analysis on the blood flow passing through leaflets, the kinetodynamics analysis on the rigid body motion of the leaflet induced by the pulsatile blood flow, and the structural mechanics analysis for the deformed leaflet are required sequentially and simultaneously. Fluid forces computed in the fluid mechanics analysis on the blood flow are used in the kinetodynamics analysis for the leaflet motion. Thereafter, the structural mechanics analysis for the deformed leaflet follows to predict the structural strength variation of the leaflet as the leaflet thickness changes. Analysis results show that structural deformations and stresses increase as the fluid pressure increases and the leaflet thickness decreases. Analysis results also show that the leaflet becomes structurally weaker and weaker as the leaflet becomes thinner and thinner.

Structural Analysis of RIROB(Reactor Inspection Robot) (원자로용 수중탐상기의 구조해석)

  • 권영주;최석호;김재희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2003
  • This paper presents the structural analysis of RIROB(Reactor Inspection Robot). Actually, several analyses such as kinetodynamics analysis, fluid mechanics analysis and structural mechanics analysis etc. should be carried out in the design of RIROB. These analyses are executed through the use of com-puter aided engineering(CAE) systems. The kinetodynamics analysis is carried out using a simple fluid dynamic analysis model for the water flow over the sensor support surface instead of difficult fluid mechanics analysis. Simultaneously the structural mechanics analysis is carried out to obtain the mini-mum thickness of the RIROB housing. The minimum thickness of the RIROB housing is evaluated to be 1.0 ㎝ for the safe design of RIROB. The kinetodynamics analysis of RIROB is performed using ADAMS and the static structural mechanics analysis of RIROB is performed using NISA.

A Study on the Development Fluid Mechanics Principles by WBI Learning Program (유체역학의 원리 학습을 위한 WBI 프로그램 개발 연구)

  • Son, Young-Bae;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2324-2330
    • /
    • 2010
  • In middle and high school to learn the principles of fluid mechanics to Experiments in space and time constraints and difficulties for the study of the principles of fluid mechanics to the problem is superficial. In this paper, Pascal's principles, Archimedes' Principle, Bernoulli's Theorem, etc. learning about the fluid mechanics and implemented in Web Browser, In connection with flash and HTML, web simulation is to implement. Web Based Instruction program that implemented a comparative analysis became an effect of 15% to industrial total high school students in satisfaction, Interest, Achievement. The fluid mechanics education through engineering design and web design through the actual web server is implemented on the Internet over broadband. Department of Education, this study the fluid mechanics and the Internet will contribute to the development of distance education.

Application of model reduction technique and structural subsection technique on optimal sensor placement of truss structures

  • Lu, Lingling;Wang, Xi;Liao, Lijuan;Wei, Yanpeng;Huang, Chenguang;Liu, Yanchi
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.355-373
    • /
    • 2015
  • An optimal sensor placement (OSP) method based on structural subsection technique (SST) and model reduction technique was proposed for modal identification of truss structures, which was conducted using genetic algorithm (GA). The constraints of GA variables were determined by SST in advance. Subsequently, according to model reduction technique, the optimal group of master degrees of freedom and the optimal objective function value were obtained using GA in a case of the given number of sensors. Correspondingly, the optimal number of sensors was determined according to optimal objective function values in cases of the different number of sensors. The proposed method was applied on a scaled jacket offshore platform to get its optimal number of sensors and the corresponding optimal sensor layout. Then modal kinetic energy and modal assurance criterion were adopted to evaluate vibration energy and mode independence property. The experiment was also conducted to verify the effectiveness of the selected optimal sensor layout. The results showed that experimental modes agreed reasonably well with numerical results. Moreover the influence of the proposed method using different optimal algorithms and model reduction technique on optimal results was also compared. The results showed that the influence was very little.

Advanced flutter simulation of flexible bridge decks

  • Szabo, Gergely;Gyorgyi, Jozsef;Kristof, Gergely
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.133-154
    • /
    • 2012
  • In this paper a bridge flutter prediction is performed by using advanced numerical simulation. Two novel approaches were developed simultaneously by utilizing the ANSYS v12.1 commercial software package. The first one is a fluid-structure interaction simulation involving the three-dimensional elastic motion of a bridge deck and the fluid flow around it. The second one is an updated forced oscillation technique based on the dynamic mode shapes of the bridge. An aeroelastic wind tunnel model was constructed in order to validate the numerical results. Good agreement between the numerical results and the measurements proves the applicability of the novel methods in bridge flutter assessment.

The detection of cavitation in hydraulic machines by use of ultrasonic signal analysis

  • Gruber, P.;Farhat, M.;Odermatt, P.;Etterlin, M.;Lerch, T.;Frei, M.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.264-273
    • /
    • 2015
  • This presentation describes an experimental approach for the detection of cavitation in hydraulic machines by use of ultrasonic signal analysis. Instead of using the high frequency pulses (typically 1MHz) only for transit time measurement different other signal characteristics are extracted from the individual signals and its correlation function with reference signals in order to gain knowledge of the water conditions. As the pulse repetition rate is high (typically 100Hz), statistical parameters can be extracted of the signals. The idea is to find patterns in the parameters by a classifier that can distinguish between the different water states. This classification scheme has been applied to different cavitation sections: a sphere in a water flow in circular tube at the HSLU in Lucerne, a NACA profile in a cavitation tunnel and two Francis model test turbines all at LMH in Lausanne. From the signal raw data several statistical parameters in the time and frequency domain as well as from the correlation function with reference signals have been determined. As classifiers two methods were used: neural feed forward networks and decision trees. For both classification methods realizations with lowest complexity as possible are of special interest. It is shown that two to three signal characteristics, two from the signal itself and one from the correlation function are in many cases sufficient for the detection capability. The final goal is to combine these results with operating point, vibration, acoustic emission and dynamic pressure information such that a distinction between dangerous and not dangerous cavitation is possible.

A Study on the Relative Motivation of Shannon's Information Theory (샤논 정보이론의 상관성 동기에 관한 연구)

  • Lee, Moon-Ho;Kim, Jeong-Su
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.51-57
    • /
    • 2021
  • In this paper, the relevance between Einstein's special theory of relativity (1905) and Bernoulli's fluid mechanics (1738), which motivates Shannon's theorem (1948), was derived from the AB=A/A=I dimension, and the Shannon's theorem channel code was simulated. When Bernoulli's fluid mechanics ΔP=pgh was applied to the Hallasan volcano Magma eruption, the dimensions and heights matched the measured values. The relationship between Einstein's special theory of relativity, Shannon's information theory, and the stack effect theory of fluid mechanics was analyzed, and the relationship between volcanic eruptions was mathematically proven. Einstein's and Bernoulli's conservation of energy and conservation of mass were the same in terms of bandwidth and power efficiency in Shannon's theorem.