• 제목/요약/키워드: fluctuating

검색결과 762건 처리시간 0.022초

Effect of Temperature Change on the Respiration Characteristics of Vegetables

  • Kawagoe, Yoshinori;Seo, Yasuhisa;Oshita, Sei-Ichi;Sagara, Yasuyuki
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.947-952
    • /
    • 1996
  • The effect of fluctuating temperature on the respiration of vegetables has been investigated. Spinach was selected as the experimental material because of its high respiratory activity and kept under the condition that temperature changed alternately at low and high levels every 4 hours. The low-high level temperature combination was set in $1-10^{\circ}C,{\;}1-20^{\circ}C{\;}and{\;}1-30^{\circ}C$. Respiration was evaluated in terms of quantity of $CO_2$ evolved from spinach. The evolution rate of $CO_2$ was determined by a change in its concentration. The evaluation rate of $CO_2$ followed closely the temperature change. In the temperature combinations at $1-10^{\circ}C{\;}and{\;}1-20^{\circ}C$, the relationship between $CO_2$ evolution rate and temperature was found to be able to express by Arrhenius law, while at $1-30^{\circ}C$, it did not obey the law.

  • PDF

실린더 근접후류에서 위상학적 구조와 2차 와류의 상호 관계 (Interrelationship Between Topological Structures and Secondary Vortices in the Near Wake of aCircular Cylinder)

  • 성재용;유정열
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1355-1364
    • /
    • 2001
  • Characteristics of secondary vortices is topologically investigated in the near-wake region of a circular cylinder, where the Taylor's hypothesis does nut hold. The three-dimensional flow fields in the wake-transition regime were measured by a time-resolved PIV for various planes of view. The convection velocities of the Karman and secondary vortices are evaluated from the trajectory of the vortex center. Then, saddle points are determined by applying the critical point theory. It is shown that the inclination angle of the secondary vortices agrees well with the previous experimental data. The flow fields in a moving frame of reference have several critical points and the mushroom-like structure appears in the streamline patterns of the secondary vortices. Since the distributions of fluctuating Reynolds stresses defined by triple decomposition are closely related with the existence of secondary vortices, the physical meaning of them is explained in conjunction with the vortex center and saddle point trajectories.

Physiological Signal Analyses of Frictional Sound by Structural Parameters of Warp Knitted Fabrics

  • Cho Gilsoo;Kim Chunjeong;Cho Jayoung;Ha Jiyoung
    • Fibers and Polymers
    • /
    • 제6권1호
    • /
    • pp.89-94
    • /
    • 2005
  • The purpose of this study is to offer acoustical database of warp knitted fabrics by investigating frictional sound properties and physiological responses according to structural parameters such as construction, lap form, and direction of mutual guide bar movement. Fabric sounds of seven warp knitted fabrics are recorded, and Zwicker's psychoacoustic param­eters - loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z) - are calculated. Also, physiological responses evoked by frictional sounds of warp knitted fabrics are measured such as electroencephalogram (EEG), the ratio of high fre­quency to low frequency (HF/LF), respiration rate (RESP), skin conductance level (SCL), and photoplethysmograph (PPG). In case of constructions, frictional sound of sharkskin having higher loudness(Z) and fluctuation strength(Z) increases RESP. By lap form, open lap has louder and larger fluctuating sound than closed lap, but there aren't significant difference of physi­ological responses between open lap and closed lap. In direction of mutual guide bar movement, parallel direction evokes bigger changes of beta wave than counter direction because of its loud, rough, and fluctuating sound. Fluctuation strength(Z) and roughness(Z) are defined as important factors for predicting physiological responses in construction and mutual guide bar movement, respectively.

Wind effects on a large cantilevered flat roof: loading characteristics and strategy of reduction

  • Fu, J.Y.;Li, Q.S.;Xie, Z.N.
    • Wind and Structures
    • /
    • 제8권5호
    • /
    • pp.357-372
    • /
    • 2005
  • Mean and extreme pressure distributions on a large cantilevered flat roof model are measured in a boundary layer wind tunnel. The largest peak suction values are observed from pressure taps beneath conical "delta-wing type" corner vortices that occur for oblique winds, then the characteristics and causes of the local peak suctions are discussed in detail. Power spectra of fluctuating wind pressures measured from some typical taps located at the roof edges under different wind directions are presented, and coherence functions of fluctuating pressures are also obtained. Based on these results, it is verified that the peak suctions are highly correlated with the conical vortices. Furthermore, according to the characteristics of wind loads on the roof, an aerodynamic solution to minimize the peak suctions by venting the leading edges and the corners of the roof is recommended. The experimental results show that the suggested strategy can effectively control the generation of the conical vortices and make a reduction of 50% in mean pressures and 25% in extreme local pressures at wind sensitive locations on the roof.

Time domain buffeting analysis of long suspension bridges under skew winds

  • Liu, G.;Xu, Y.L.;Zhu, L.D.
    • Wind and Structures
    • /
    • 제7권6호
    • /
    • pp.421-447
    • /
    • 2004
  • This paper presents a time domain approach for predicting buffeting response of long suspension bridges under skew winds. The buffeting forces on an oblique strip of the bridge deck in the mean wind direction are derived in terms of aerodynamic coefficients measured under skew winds and equivalent fluctuating wind velocities with aerodynamic impulse functions included. The time histories of equivalent fluctuating wind velocities and then buffeting forces along the bridge deck are simulated using the spectral representation method based on the Gaussian distribution assumption. The self-excited forces on an oblique strip of the bridge deck are represented by the convolution integrals involving aerodynamic impulse functions and structural motions. The aerodynamic impulse functions of self-excited forces are derived from experimentally measured flutter derivatives under skew winds using rational function approximations. The governing equation of motion of a long suspension bridge under skew winds is established using the finite element method and solved using the Newmark numerical method. The proposed time domain approach is finally applied to the Tsing Ma suspension bridge in Hong Kong. The computed buffeting responses of the bridge under skew winds during Typhoon Sam are compared with those obtained from the frequency domain approach and the field measurement. The comparisons are found satisfactory for the bridge response in the main span.

Recent Brazilian research on thunderstorm winds and their effects on structural design

  • Riera, Jorge D.;Ponte, Jacinto Jr.
    • Wind and Structures
    • /
    • 제15권2호
    • /
    • pp.111-129
    • /
    • 2012
  • Codes for structural design usually assume that the incident mean wind velocity is parallel to the ground, which constitutes a valid simplification for frequent winds caused by sypnoptic events. Wind effects due to other phenomena, such as thunderstorm downbursts, are simply neglected. In this paper, results of recent and ongoing research on this topic in Brazil are presented. The model of the three-dimensional wind velocity field originated from a downburst in a thunderstorm (TS), proposed by Ponte and Riera for engineering applications, is first described. This model allows the generation of a spatially and temporally variable velocity field, which also includes a fluctuating component of the velocity. All parameters are related to meteorological variables, which are susceptible of statistical assessment. An application of the model in the simulation of the wind climate in a region sujected to both EPS and TS winds is discussed next. It is shown that, once the relevant meteorological variables are known, the simulation of the wind excitation for purposes of design of transmission lines, long-span crossings and similar structures is feasible. Complementing the theoretical studies, wind velocity records during a recent TS event in southern Brazil are presented and preliminary conclusions on the validity of the proposed models discussed.

문풀 내 압력 변동에 대한 POD 분석 (Proper Orthogonal Decomposition of Pressure Fluctuations in Moonpool)

  • 이상봉;한범우;박동우;안유원;고석천;서흥원
    • 대한조선학회논문집
    • /
    • 제49권6호
    • /
    • pp.484-490
    • /
    • 2012
  • Experiments of circulating water channel and two dimensional numerical simulations were performed to investigate the fluctuating characteristics of pressure in moonpool. Based on the quasi-two dimensional characteristics of pressure fluctuations disclosed by the spatial cross-correlations, the numerical results showed qualitatively good agreement with experimental data. Proper orthogonal decomposition was employed to the spatial distributions of pressure fluctuations in order to find the first and second modes of fluctuations. The first mode of pressure fluctuations showed that the fluctuating characteristics of pressure were related to the behaviors of vortical structures. The velocity fluctuations were conditionally averaged to make clear that the coherent structures were responsible for the pressure fluctuations in moonpool.

Experimental investigation of flow characteristics around four square-cylinder arrays at subcritical Reynolds numbers

  • Liu, Mingyue;Xiao, Longfei;Yang, Lijun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권5호
    • /
    • pp.906-919
    • /
    • 2015
  • The Deep Draft Semi-Submersible (DDS) concepts are known for their favourable vertical motion performance. However, the DDS may experience critical Vortex-Induced Motion (VIM) stemming from the fluctuating forces on the columns. In order to investigate the current-induced excitation forces of VIM, an experimental study of flow characteristics around four square-section cylinders in a square configuration is presented. A number of column spacing ratios and array attack angles were considered to investigate the parametric influences. The results comprise flow patterns, drag and lift forces, as well as Strouhal numbers. It is shown that both the drag and lift forces acting on the cylinders are slightly different between the various L/D values, and the fluctuating forces peak at L/D = 4.14. The lift force of downstream cylinders reaches its maximum at around ${\alpha}=15^{\circ}$. Furthermore, the flow around circular-section-cylinder arrays is also discussed in comparison with that of square cylinders.

동축이중 공기분류중의 난류확산화염에 관한 실험적 연구 II (An Experimental Study on Turbulent Diffusion Flame in Double Coaxial Air Jets(II))

  • 조용대;최병윤
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1234-1243
    • /
    • 1990
  • 본 연구에서는 선회가 없는 중심기류와 주위기류의 난류 전단층에서 형성되는 난류확산화염의 천이영역(transition region)에 주목하여 전단층내의 혼합작용과 화염 구조와의 상호작용을 규명하기 위해 거시적 및 순간적인 화염구조에 대해 실험적으로 조사 연구한 결과를 보고한다.

Numerical study of wind profiles over simplified water waves

  • Cao, Shuyang;Zhang, Enzhen;Sun, Liming;Cao, Jinxin
    • Wind and Structures
    • /
    • 제21권3호
    • /
    • pp.289-309
    • /
    • 2015
  • Vertical profiles of mean and fluctuating wind velocities over water waves were studied, by performing Large-Eddy Simulations (LES) on a fully developed turbulent boundary layer over simplified water waves. The water waves were simplified to two-dimensional, periodic and non-evolving. Different wave steepness defined by $a/{\lambda}$ (a : wave amplitude; ${\lambda}$ : wavelength) and wave age defined by $c/U_b$ (c: phase velocity of the wave; $U_b$ : bulk velocity of the air) were considered, in order to elaborate the characteristics of mean and fluctuating wind profiles. Results shows that, compared to a static wave, a moving wave plays a lesser aerodynamic role as roughness as it moves downstream slower or a little faster than air, and plays more aerodynamic roles when it moves downstream much faster than air or moves in the opposite direction to air. The changes of gradient height, power law index, roughness length and friction velocity with wave age and wave amplitude are presented, which shed light on the wind characteristics over real sea surfaces for wind engineering applications.