• Title/Summary/Keyword: flowing material balance

Search Result 11, Processing Time 0.023 seconds

Exergy analysis on the storage performance of the sensible heat storage unit (현열 축열조의 성능에 관한 엑서지 해석)

  • 김시범;권순석
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.176-182
    • /
    • 1988
  • The exergy analysis on the heat storage performance of the senible heat storage unit which consists of the heat storage material in the concentric annulus and the hot fluid flowing through the inner tube is performed. Heat transfer characteristics which are necessary for the performance of the exergy analysis is obtained from the energy balance equations and the second law of thermodynamics. As the index of heat storage performance, the exergy lossnumber $N_{s}$, and exergy storage ratio from the concepts of the second law of thermodynamics are defined. Results are ovtained for the grometry of the storage unit, the Biot number Bi, ambient temperature $T_{o}$ as parameters. From these results the exergy storage ratio can be considered as the efficiency of the hat storage unit and is introduced as a guide to design.

  • PDF

Comprehensive Assessment of the Utilization System for Marine Biomass Resources Using Exergy Flows (엑서지 흐름을 이용한 해양 생물체 자원 이용 시스템의 포괄적인 평가)

  • Kuroda, Kana;Nakatani, Naoki;Otsuka, Koji
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.2
    • /
    • pp.126-132
    • /
    • 2012
  • In recent years, serious environmental problems occur in coastal area due to high pollution loads from human activity in land. Marine biomass utilization system therefore has been proposed to prompt material circulation between land and sea. Comprehensive assessment is necessary to determine that the proposed system is suitable and sustainable. This study introduces thermodynamic concept exergy, which expresses energy quality, to describe material and energy flowing in the material circulation system. This study presents material, energy and exergy flows in the material circulation system at Sakai city located in the middle of Osaka in Japan. It is found that exergy helps a better understanding of what is a key role is in exergy-efficient material circulation system.

A computer simulation of transport phenomena in a roller kiln (로울러 킬른 내의 이동현상에 관한 전산모사)

  • 이성철;김병수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.251-259
    • /
    • 1999
  • A computer simulation was conducted for heat and momentum transfer in a roller kiln. Time-averaged Navier-Stokes equation conjugated with energy balance equation was numerically solved to predict the temperature distribution and fluid flow field in the roller kiln. A computer simulation was performed for a roller kiln for three cases. Firstly, when there are no ceramic materials in the roller kiln, the effect of natural convection was studied on the temperature distribution and fluid flow field. From the result, it was observed that air takes the heat of wall away from the roller kiln by natural convection and the heat was not transferred effectively. Secondly, with ceramic materials temperature difference of ceramic material from the borrom to the top of a ceramic material was about 255K in 5th zone and this is because the heat is transferred from the surface of a ceramic material to flowing air with relatively low temperature. Finally, we considered effect of radiation heat transfer. Temperature difference of ceramic material in 5th zone was about 300 K, due to radiation heat transfer on the ceramic material surfaces.

  • PDF

A Numerical Study on the Spray Dryer Characteristic for Manufacture of Deep Sea Water Salt (해양심층수 기능성소금 제조를 위한 분무건조기 특성의 수치해석적 연구)

  • Kim, Hyeon-Ju;Shin, Phil-Kwon;Park, Seong-Je
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.24-29
    • /
    • 2003
  • Deep sea water has cold temperature, abundant nutrients and minerals, and good water quality that is pathogen-free and stable. Compared with surface water, deep sea water contains more nutrition salt, such as nitrogen and phosphor. Moreover, if has the good balance of minerals. Because of the ability of the spray drying process to produce a free-flowing power considering of spherical particles with a well-defined size distribution and the rapid drying times for heat-sensitive material, spray drying is attractive for a wide range of applications spray drying is a unique unit operation in which powders are produced from a liquid feed in a single processing step. Key component of the process are atomizer, spray chamber. Design of spray chamber should be based on the atomizer type, the production rate, and the particle size required. Because of the complex processes taking place during spray drying, traditional design method are based on pilot-plant tests and empirical scale-up rules. Modern technique such as CFD have a role to play in design and troubleshooting.

  • PDF

NUMERICAL SIMULATION OF SCOUR BY A WALL JET

  • A.A.Salehi Neyshabouri;R.Barron;A.M.Ferreira da Silva
    • Water Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.179-185
    • /
    • 2001
  • The time consuming and expensive nature of experimental research on scouring processes caused by flowing water makes it attractive to develop numerical tools for the predication of the interaction of the fluid flow and the movable bed. In this paper the numerical simulation of scour by a wall jet is presented. The flow is assumed to be two-dimensional, and the alluvium is cohesionless. The solution process, repeated at each time step, involves simulation of a turbulent wall jet flow, solution of the convection-diffusion of sand concentration, and prediction of the bed deformation. For simulation of the jet flow, the governing equations for momentum, mass balance and turbulent parameters are solved by the finite volume method. The SIMPLE scheme with momentum interpolation is used for pressure correction. The convection-diffusion equation is solved for sediment concentration. A boundary condition for concentration at the bed, which takes into account the effect of bed-load, is implemented. The time rate of deposition and scour at the bed is obtained by solving the continuity equation for sediment. The shape and position of the scour hole and deposition of the bed material downstream of the hole appear realistic.

  • PDF

Modeling and Analysis of Dynamic Characteristic for Bundle Fluid System (집속체 유동계의 모델링과 운동 특성해석)

  • Kim, Jong-Sung;Heo, Yu;Kim, Yoon-Hyuk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1643-1646
    • /
    • 2003
  • Drawing is a mechanical operation that attenuates thick material to an appropriate thickness for the next processing or end usage. When the input material has the form of a bundle or bundles made of very thin and long shaped wire or fibers, this attenuation operation is called "bundle drawing" or "drafting" Drafting is being used widely in manufacturing staple yarns. which is indispensable for the textile industry. However, the bundle processed by this operation undertake more or less defects in the evenness of linear density. Such irregularities cause many problems not only for the product quality but also for the efficiency of the next successive processes. Since long there have been many researches tying to find out factors affecting the irregularity of linear desity, to obtain optimal drafting conditions, to develop efficient measuring and analysis methods of linear density of bundle, etc., but there exists yet no fundamental equation describing the dynamic behavior of the flowing bundle during processing. In this research a mathematical model for the dynamic behavior of the bundle fluid is to be set up on the basis of general physical lows representing physical variables, i.e. linear density and velocity as the dynamic state of bundle. The conservation of mass and momentum balance was applied to the fluid field of bundle. while the movement of′ individual material was taken into account. The constitutive model relating the surface force and the deformation of bundle was introduced by considering a representative prodedure that stands for the bundle movement. Then a fundamental equations system could be simplified considering a steady state of the process. On the basis of the simplified model, the simulation was performed and the results could be confirmed by the experiments under various conditions.

  • PDF

Development of Production Performance Forecasting Model Considering Pressure Dependent Permeability at Coalbed Methane Reservoir (석탄층 메탄가스전에서 압력 의존 투과도를 고려한 생산거동 예측 모델 개발)

  • Kim, Sangho;Kwon, Sunil
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.3
    • /
    • pp.7-19
    • /
    • 2019
  • In this study, a model was developed for estimating deliverability considering the pressure dependent permeability and predicting production profile with Material Balance Equation(MBE) for Coalbed Methane(CBM) fields. The estimated deliverability was compared with the conventional deliverability based on CBM well testing data with coefficient of determination($R^2$). As a result, the former was 0.76 and the latter was 0.69. It was confirmed that the deliverability which consider the pressure dependent permeability is more adoptable when representing the productivity of CBM fields. Through this process, in order to calculate pressure dependent permeability when well testing data exist, a method to infer reservoir pressure within the radius of investigation was proposed. The production profile of 31 gas wells was predicted for 15 years, using the estimated deliverability and the MBE. After that, the results was compared with simulation results of the literature. The simulation results did not account the pressure dependent permeability and the developed model results considered that. As the applied field permeability rised 1.17 times, field production rate was increased approximately 15% than the literature results. According to other researches, the permeability of CBM fields can be rise 6 ~ 25 times. For these cases, the production profiles may have significant difference with conventional gas fields.

Production Data Analysis to Predict Production Performance of Horizontal Well in a Hydraulically Fractured CBM Reservoir (수압파쇄된 CBM 저류층에서 수평정의 생산 거동예측을 위한 생산자료 분석)

  • Kim, Young-Min;Park, Jin-Young;Han, Jeong-Min;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.1-11
    • /
    • 2016
  • Production data from hydraulically fractured well in coalbed methane (CBM) reservoirs was analyzed using decl ine curve analysis (DCA), flow regime analysis, and flowing material balance to forecast the production performance and to determine estimated ultimate recovery (EUR) and timing for applying the DCA. To generate synthetic production data, reservoir models were built based on the CBM propertie of the Appalachian Basin, USA. Production data analysis shows that the transient flow (TF) occurs for 6~16 years and then the boundary dominated flow (BDF) was reached. In the TF period, it is impossible to forecast the production performance due to the significant errors between predicted data and synthetic data. The prediction can be conducted using the production data of more than a year after reached BDF with EUR error of approximately 5%.

Study on Production Performance of Shale Gas Reservoir using Production Data Analysis (생산자료 분석기법을 이용한 셰일가스정 생산거동 연구)

  • Lee, Sun-Min;Jung, Ji-Hun;Sin, Chang-Hoon;Kwon, Sun-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.58-69
    • /
    • 2013
  • This paper presents production data analysis for two production wells located in the shale gas field, Canada, with the proper analysis method according to each production performance characteristics. In the case A production well, the analysis was performed by applying both time and superposition time because the production history has high variation. Firstly, the flow regimes were classified with a log-log plot, and as a result, only the transient flow was appeared. Then the area of simulated reservoir volume (SRV) analyzed based on flowing material balance plot was calculated to 180 acres of time, and 240 acres of superposition time. And the original gas in place (OGIP) also was estimated to 15, 20 Bscf, respectively. However, as the area of SRV was not analyzed with the boundary dominated flow data, it was regarded as the minimum one. Therefore, the production forecasting was conducted according to variation of b exponent and the area of SRV. As a result, estimated ultimate recovery (EUR) increased 1.2 and 1.4 times respectively depending on b exponent, which was 0.5 and 1. In addition, as the area of SRV increased from 240 to 360 acres, EUR increased 1.3 times. In the case B production well, the formation compressibility and permeability depending on the overburden were applied to the analysis of the overpressured reservoir. In comparison of the case that applied geomechanical factors and the case that did not, the area of SRV was increased 1.4 times, OGIP was increased 1.5 times respectively. As a result of analysis, the prediction of future productivity including OGIP and EUR may be quite different depending on the analysis method. Thus, it was found that proper analysis methods, such as pseudo-time, superposition time, geomechanical factors, need to be applied depending on the production data to gain accurate results.

Geochemical Modeling of Groundwater in Granitic Terrain: the Yeongcheon Area (영천 화강암지역 지하수의 지화학적 모델링)

  • Koh, Yong-Kwon;Kim, Chun-Soo;Bae, Dae-Seok;Yun, Seong-Taek
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.4
    • /
    • pp.192-202
    • /
    • 1998
  • We investigated the geochemistry and environmental isotopes of granite-bedrock groundwater in the Yeongcheon diversion tunnel which is located about 300 m below the land surface. The hydrochemistry of groundwaters belongs to the Ca-HCO$_3$type, and is controlled by flow systems and water-rock interaction in the flow conduits (fractures). The deuterium and oxygen-18 data are clustered along the meteoric water line, indicating that the groundwater are commonly of meteoric water origin and are not affected by secondary isotope effects such as evaporation and isotope exchange. Tritium data show that the groundwaters were mostly recharged before pre-thermonuclear period and have been mixed with younger surface water flowing down rapidly into the tunnel along fractured zones. Based on the mass balance and reaction simulation approaches, using both the hydrochemistry of groundwater and the secondary mineralogy of fracture-filling materials, we have modeled the low-temperature hydrogeochemical evolution of groundwater in the area. The results of geochemical simulation show that the concentrations of Ca$\^$2+/, Na$\^$+/ and HCO$_3$and pH of waters increase progressively owing to the dissolution of reactive minerals in flow paths. The concentrations of Mg$\^$2+/ and K$\^$+/ frist increase with the dissolution, but later decrease when montmorillonite and illitic material are precipitated respectively. The continuous adding of reactive minerals, namely the progressively larger degrees of water/rock interaction, causes the formation of secondary minerals with the following sequence: first hematite, then gibbsite, then kaolinite, then montmorillonite, then illtic material, and finally microcline. During the simulation all the gibbsite is consumed, kaolinite precipitates and then the continuous reaction converts the kaolinite to montmorillonite and illitic material. The reaction simulation results agree well with the observed, water chemistry and secondary mineralogy, indicating the successful applicability of this simulation technique to delineate the complex hydrogeochemistry of bedrock groundwaters.

  • PDF