• Title/Summary/Keyword: flower bud formation

Search Result 57, Processing Time 0.022 seconds

Analysis of Arthropod Communities in Sunflower-cultivated Fields to Develop Risk Assessment Guidelines for LMO Used for Environmental Remediation

  • Kim, Dong Eon;Kim, Dayeong;Ban, Young-Gyu;Lee, Minji;Lee, Heejo;Jo, Aram;Han, Sung Min;Lee, Jung Ro;Nam, Kyong-Hee
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.2
    • /
    • pp.129-138
    • /
    • 2021
  • Living modified organisms (LMOs) are managed by seven government agencies according to their use in South Korea. The Ministry of Environment is responsible for LMOs used for environmental remediation. This study aimed to develop guidelines for assessing potential risks posed by transgenic plants used for remediation to insect ecosystems by investigating arthropod communities in sunflower fields. A total of 2,350 insects and spiders belonging to 134 species of 10 orders and 71 families were collected from sunflower fields over four growth stages ranging from anthesis to seed maturity. At the R3 phase of flower-bud formation, Chironomidae sp. of a decomposer insect guild presented the highest density, while Apis mellifera of a pollinator guild was the most abundant in the R5.8 phase of flowering. During the R7 seed-filling phase and the R9 phase of seed maturity, herbivorous Pochazia shantungensis predominated. During the R9 phase, richness and diversity indices of arthropod communities were distinctly lower whereas their dominance indices were significantly higher than those at other phases. In addition, the composition of arthropod communities was strongly correlated not only with the sampling date, but also with the sampling method depending on the growth stage of sunflowers. Our results suggest that appropriate sampling timing and methods should be considered in advance and that long-term field trials that cover a variety of environmental conditions should be carried out to evaluate potential risks to insect ecosystems.

Evaluation of Reproductive Growth in a Mature Stand of Korean Pine under Simulated Climatic Condition (국지기후가 잣나무 성숙임분의 생식생장에 미치는 영향분석)

  • 김일현;신만용;김영채;전상근
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.185-198
    • /
    • 2001
  • This study was conducted to reveal the effects of local climatic conditions on reproductive growth in a mature stand of Korean white pine based on climatic estimates. For this, the reproductive growth such as production and characteristics of cone and seed were first measured and summarized for seven years from 1974 to 1980. The local climatic conditions in the study site were also estimated by both a topoclimatological method and a spatial statistical technique. The local climatic conditions were then correlated with and regressed on the growth factors to reveal the relationships between the climatic estimates and the reproductive growth. Average number of conelet formation per tree showed highly negative correlation with some climatic variables related to minimum temperature in the year of flower bud differentiation. Especially, the most significant negative correlation were found between average of the minimum temperature for June and July of flower bud differentiation year and the number of conelet formation. There was no significant correlation between the number of cone production and climatic variables. However, total precipitation from December of the flowering year to February of the cone production year showed the most high correlation (r=0.6036) with the number of cone production. It was found that significant climatic variables affecting the amount of cone drop and cone drop percentage were the sum of cloudy days from June of the flowering year to August of the cone production year. Positive correlation was significantly recognized between the average weight of empty seed per cone and total precipitation from December of the flowering year to February of the cone production year. For the percentage of empty seed, five climatic variables among 19 variables were significantly correlated at 10% level. The average weight of a cone showed negative correlation with total precipitation from June of the flowering year to August of the cone production year. It was also found that average weight of a seed had highly negative correlation with total precipitation from December of the flowering year to February of the cone production year. The average weight of cone coat was negatively correlated with two climatic variables derived from clear days, which are sum of clear days from November of the flowering year to March of the cone production year and sum of clear days from December of the flowering year to February of the cone production year. On the other hand, it showed positive correlation with mean temperature of May in the flowering year. The exactly same results were obtained in correlation analysis for the percentage of cone coat.

  • PDF

Effect of Foliar Application of GA3 on the Flower Bud Formation and Fruit Quality of Satsuma Mandarine (C. unshiu Marc. cv. Miyagawa) (지베렐린 엽면살포가 '궁천조생' 감귤의 착화와 과실품질에 미치는 영향)

  • Kang, Seok-Beom;Moon, Young-Eel;Han, Seung-Gab;Kim, Yong-Ho;Chae, Chi-Won;Choi, Young-Hun
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.343-347
    • /
    • 2013
  • BACKGROUND: Control of alternate bearing satsuma mandarin in Jeju is very important to maintain the optimum price of fruit and get the sustainable income of farmers. Unlike orange, Satsuma mandarin is well known to sensitive on alternate bearing. We carried out the experiment to know the effect of foliar application of $GA_3$ on the flowering and fruit quality of satsuma mandarin (C. unshiu Marc. cv. Miyagawa). METHODS AND RESULTS: To experiment, the treatments consist of control, different concentration of $GA_3$ (25, 50 and 100 mg/L), machine oil emulsion 100 times and mixture of various concentration of $GA_3$ (25 and 50 mg/L) with machine oil emulsion 100 times which it was applied on 15 year-old Miyagawa satsuma mandarin at December 29, 2011. Foliar application of $GA_3$ in winter reduced the flowering of satsuma mandarin. Flower-leaf ratio was significantly reduced at 100 mg/L $GA_3$, while no differences observed in low concentration of $GA_3$ (25 and 50 mg/L). However, it was significantly decreased to 0.19 in application of $GA_3$ 25 and 50 mg/L with machine oil emulsion 100 times mixture. Number of leaves per fruit was significantly increased as foliar application of $GA_3$ also it reduced the fruits remarkably. Soluble solid contents and Hunter's a of peel color ratio showed no difference among $GA_3$ single treatments, but it was reduced in $GA_3$ 25 and 50 mg/L with machine oil emulsion 100 times mixtures significantly. From the results, it has been found that higher $GA_3$ concentration can reduce the number of flowers on the alternate bearing of satsuma mandarin. However, it was found that lower concentration of $GA_3$ with machine oil emulsion mixture 100 times can reduce flowering. CONCLUSION(S): The foliar application of $GA_3$ (100 mg/L) can alleviate alternate beraring. Also, mixture of lower concentration of $GA_3$ with machine oil emulsion 100 times can retard flowering more significantly while it needs further confirmation.

The Survey of Actual Using Conditions of Farm-Made Liquid Fertilizers for Cultivating Environment-friendly Agricultural Products (친환경 농산물 재배를 위한 농가 자가제조 액비 사용실태)

  • An, Nan-Hee;Jo, Young-Sang;Jo, Jeong-Rae;Kim, Yong-Ki;Lee, Yeon;Jee, Hyeong-Jin;Lee, Sang-Min;Park, Kwang-Lai;Lee, Byung-Mo
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.3
    • /
    • pp.345-356
    • /
    • 2012
  • We conducted a survey of actual using conditions of farm-made liquid fertilizers by investigating their formulation types, materials, making processes, using methods and various beneficial effects on 29 farms certified by National Agricultural Products Quality Management Service to produce environment-friendly agricultural products in 2009. Most of the materials used to make liquid fertilizers are those that can be easily obtained around the farms. Molasses or black sugar are added as an energy source of microorganism. And leaf mold, bacterial cultures supplied by agricultural extension centers of local governments, and cultures of native microorganisms were used as microbial sources for fermenting effective microorganisms. Types of the farm-made liquid fertilizers were fermented liquid fertilizers, fermented plant juices, amino acid liquid fertilizers, calcium-liquid fertilizers, and phosphoric acid liquid fertilizers. Effects of liquid fertilizers used by the farms were found to promote plant growth by supplying nutrition, to accelerate blooming and flower bud formation, to enhance the quality of agricultural products such as increase of sugar contents and improvement of storing conditions, to induce resistance against diseases and insect pests, and to cause endurance to high temperature stress. Chemical properties of the liquid fertilizers collected were analyzed. As a result, pH and EC range showed differences according to kinds of the liquid fertilizers. Amount of macro-nutrients, such as nitrogen and phosphoric acid, in most of the collected liquid fertilizers, was found to be low. Even though the liquid fertilizers were made from same materials, their contents was found to be different depending on the making process.

Identifying Genes Related with Self-thinning Characteristics in Apple by Differential Display PCR (Differential Display PCR을 이용한 사과 자가적과성 연관 유전자 탐색)

  • Kim, Se Hee;Heo, Seong;Shin, Il Sheob;Kim, Jeong-Hee;Cho, Kang-Hee;Kim, Dae-Hyun;Hwang, Jeong Hwan
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.565-573
    • /
    • 2010
  • Thinning of apple fruitlets is one of the most laborious and important works for the improvement of fruit quality and for the promotion of sufficient flower bud formation to prevent alternate bearing in commercial cultivars. Lateral fruits of self-thinning apple cultivars fall naturally within 30 days after full bloom and only central fruit remains to mature. Differences of gene expression between central fruit and lateral fruit were investigated by differential display (DD) PCR. Partial cDNAs of 30 clones from the central fruit and 24 clones from the lateral fruit were selected for nucleotide sequence determination and homology searches. The levels of transcripts coding for proteins involved in pathogenesis related proteins, senescence, temperature stress, protein degradation, fruit browning, sorbitol metabolism were significantly higher in pedicels of lateral fruit than in pedicels of central fruit. On the other hand, the up-regulation of proteins involved in anthocyanin and flavanol biosynthesis and ethylene synthesis were observed in pedicels of central fruit. In Real time PCR analysis, cytochrome P450 gene was confirmed as showing a higher expression level in lateral fruit than in central fruit. The results of this study indicate that differentially expressed genes are related to self-thinning characteristics in apple tree.

Effect of Early Defoliation on Fruit Yield, Reserve Accumulations and Flower Bud Formation in 'Sinano Sweet' Apple Trees (조기낙엽이 사과 '시나노스위트'의 수량, 저장양분 및 꽃눈형성에 미치는 영향)

  • Han, Jeom Hwa;Han, Hyun Hee;Kwon, Yong Hee;Jung, Jea Hoon;Ryu, Su-Hyun;Do, Kyeong Ran;Lee, Han-Chan;Choi, In Myeong;Kim, Tae-Choon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.133-137
    • /
    • 2016
  • 'Sinano Sweet' apple trees were defoliated at intervals of a month from May to October to simulate damage occured by hail and typhoon in Korea, accordingly fruit yield, reserve accumulations and return bloom were investigated. As the more severe defoliation degree was and earlier defoliation time was, fruit weight and fruit yields were more decreased. Fruit weight and yields of 30% defoliated trees, regardless of the defoliation time, showed no significant difference with those of control. Because carbohydrate contents of the 2-year old branches defoliated before August were even lower than those of branches defoliated after September, it was considered that defoliation time is more effective on the carbohydrate content than defoliation degree. Among the trees defoliated before August, 50% defoliated trees at August contained the lowest carbohydrate by 50% of control. Time and degree of defoliation had an effect on the number of flower buds following year. The number of return bloom in trees defoliated from May to July was decreased by delay of defoliation time and was the lowest in trees defoliated at July. On the other hand, it was not have a significant different between control and trees defoliated since August. Relationship between the number of return bloom and carbohydrate reserves showed positive correlation. As a result, it is considered that fruit thinning, when defoliation occurred in the growing season, needs for strengthening the sink function of remained individual fruit effect on fruit enlargement and for increaseing the carbohydrate reserve effect on return bloom.

Studies on the Physiological Chemistry of Seed Development in Ginseng Seed (인삼식물의 종자발육 과정에 있어서의 생리화학적 연구)

  • Hee-Chun Yang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.17
    • /
    • pp.115-133
    • /
    • 1974
  • This study was done on the metabolism of chemical components during the seed development of ginseng. The changes of the chemical components were inspected in the following periods: from the early stage of flower organ formation to flowering time, from the early stage of fruiting to maturity, during the moisture stratification before sowing. From flower bud forming stage to meiosis stage, the changes in the fresh weight, dry weight, contents of carbohydrates, and contents of nitrogen compounds were slight while the content of TCA soluble phosphorus and especially the content of organic phosphorus increased markedly. From meiosis stage to microspore stage the fresh and dry weights increase greatly. Also, the total nitrogen content increases in this period. Insolub]e nitrogen was 62-70% of the total nitrogen content; the increase of insoluble nitrogen seems to have resulted form the synthesis of protein. The content of soluble sugar (reducing and non-reducing sugar) increases greatly but there was no observable increase in starch content. In this same period, TCA soluble phosphorus reached the maximum level of 85.4% of the total phosphorus. TCA insoluble phosphorus remained at the minimum content level of 14.6%. After the pollen maturation stage and during the flowering period the dry weight increased markedly and insolub]e nitrogen also increased to the level of 67% of the total nitrogen content. Also in this stage, the organic phosphorus content decreased and was found in lesser amounts than inorganic phosphorus. A rapid increase in the starch content was also observed at this stage. In the first three weeks after fruiting the ginseng fruit grows rapidly. Ninety percent of the fresh weight of ripened ginseng seed is obtained in this period. Also, total nitrogen content increased by seven times. As the fruits ripened, insoluble nitrogen increased from 65% of the total nitrogen to 80% while soluble nitrogen decreased from 35% to 20%. By the beginning of the red-ripening period, the total phosphoric acid content increased by eight times and was at its peak. In this same period, TCA soluble phosphorus was 90% of total phosphorus content and organic phosphorus had increased by 29 times. Lipid-phosphorus, nucleic acid-phosphorus and protein-phosphorus also increased during this stage. The rate of increase in carbohydrates was similar to the rate of increase in fresh weight and it was observed at its highest point three weeks after fruiting. Soluble sugar content was also highest at this time; it begins to decrease after the first three weeks. At the red-ripening stage, soluble sugar content increased again slightly, but never reached its previous level. The level of crude starch increased gradually reaching its height, 2.36% of total dry weight, a week before red-ripening, but compared with the content level of other soluble sugars crude starch content was always low. When the seeds ripened completely, more than 80% of the soluble sugar was non-reducing sugar, indicating that sucrose is the main reserve material of carbohydrates in ginseng seeds. Since endosperm of the ripened ginseng seeds contain more than 60% lipids, lipids can be said to be the most abundant reserve material in ginseng seeds; they are more abundant than carbohydrates, protein, or any other component. During the moisture stratification, ginseng seeds absorb quantities of water. Lipids, protein and starch stored in the seeds become soluble by hydrolysis and the contents of sugar, inorganic phosphorus, phospho-lipid, nucleic acid-phosphorus, protein phosphorus, and soluble nitrogen increase. By sowing time, the middle of November, embryo of the seeds grows to 4.2-4.7mm and the water content of the seeds amounts to 50-60% of the total seed weight. Also, by this time, much budding material has been accumulated. On the other hand, dry stored ginseng seeds undergo some changes. The water content of the seeds decreases to 5% and there is an observable change in the carbohydraes but the content of lipid and nitrogen compounds did not change as much as carbohydrates.

  • PDF