• Title/Summary/Keyword: flow-3d

Search Result 3,717, Processing Time 0.037 seconds

Drag Reduction of a Circular Cylinder With O-rings (O-ring 을 이용한 원주의 저항감소에 관한 실험적 연구)

  • Lim, Hee-Chang;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2089-2094
    • /
    • 2003
  • The flow around a circular cylinder was controlled by attaching O-rings to reduce drag force acting on the cylinder. Four experimental models were tested in this study; one smooth cylinder of diameter D (D=60mm) and three cylinders fitted with O-rings of diameters d=0.0167D, 0.05D and 0.067D with pitches of PPD=1D, 0.5D and 0.25D. The drag force, mean velocity and turbulent intensity profiles in the near wake behind the cylinders were measured for Reynolds numbers based on the cylinder diameter in the range of $Re_D=7.8{\times}10^3{\sim}1.2{\times}10^5$. At $Re_D=1.2{\times}10^5$, the cylinder fitted with O-rings of d=0.0167D in a pitch interval of 0.25D shows the maximum drag reduction of about 5.4%, compared with the smooth cylinder. The drag reduction effect of O-rings of d=0.067D is not so high. For O-ring circulars, as the Reynolds number increases, the peak location of turbulence intensity shifts downstream and the peak magnitude is decreased. Flow field around the cylinders was visualized using a smoke-wire technique to see the flow structure qualitatively. The size of vortices and vortex formation region formed behind the O-ring cylinders are smaller, compared with the smooth cylinder.

  • PDF

Correct Closure of the Left Atrial Appendage Reduces Stagnant Blood Flow and the Risk of Thrombus Formation: A Proof-of-Concept Experimental Study Using 4D Flow Magnetic Resonance Imaging

  • Min Jae Cha;Don-Gwan An;Minsoo Kang;Hyue Mee Kim;Sang-Wook Kim;Iksung Cho;Joonhwa Hong;Hyewon Choi;Jee-Hyun Cho;Seung Yong Shin;Simon Song
    • Korean Journal of Radiology
    • /
    • v.24 no.7
    • /
    • pp.647-659
    • /
    • 2023
  • Objective: The study was conducted to investigate the effect of correct occlusion of the left atrial appendage (LAA) on intracardiac blood flow and thrombus formation in patients with atrial fibrillation (AF) using four-dimensional (4D) flow magnetic resonance imaging (MRI) and three-dimensional (3D)-printed phantoms. Materials and Methods: Three life-sized 3D-printed left atrium (LA) phantoms, including a pre-occlusion (i.e., before the occlusion procedure) model and correctly and incorrectly occluded post-procedural models, were constructed based on cardiac computed tomography images from an 86-year-old male with long-standing persistent AF. A custom-made closed-loop flow circuit was set up, and pulsatile simulated pulmonary venous flow was delivered by a pump. 4D flow MRI was performed using a 3T scanner, and the images were analyzed using MATLAB-based software (R2020b; Mathworks). Flow metrics associated with blood stasis and thrombogenicity, such as the volume of stasis defined by the velocity threshold ($\left|\vec{V}\right|$ < 3 cm/s), surface-and-time-averaged wall shear stress (WSS), and endothelial cell activation potential (ECAP), were analyzed and compared among the three LA phantom models. Results: Different spatial distributions, orientations, and magnitudes of LA flow were directly visualized within the three LA phantoms using 4D flow MRI. The time-averaged volume and its ratio to the corresponding entire volume of LA flow stasis were consistently reduced in the correctly occluded model (70.82 mL and 39.0%, respectively), followed by the incorrectly occluded (73.17 mL and 39.0%, respectively) and pre-occlusion (79.11 mL and 39.7%, respectively) models. The surfaceand-time-averaged WSS and ECAP were also lowest in the correctly occluded model (0.048 Pa and 4.004 Pa-1, respectively), followed by the incorrectly occluded (0.059 Pa and 4.792 Pa-1, respectively) and pre-occlusion (0.072 Pa and 5.861 Pa-1, respectively) models. Conclusion: These findings suggest that a correctly occluded LAA leads to the greatest reduction in LA flow stasis and thrombogenicity, presenting a tentative procedural goal to maximize clinical benefits in patients with AF.

Axisymmetric Swirling Flow Simulation of the Draft Tube Vortex in Francis Turbines at Partial Discharge

  • Susan-Resiga, Romeo;Muntean, Sebastian;Stein, Peter;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.295-302
    • /
    • 2009
  • The flow in the draft tube cone of Francis turbines operated at partial discharge is a complex hydrodynamic phenomenon where an incoming steady axisymmetric swirling flow evolves into a three-dimensional unsteady flow field with precessing helical vortex (also called vortex rope) and associated pressure fluctuations. The paper addresses the following fundamental question: is it possible to compute the circumferentially averaged flow field induced by the precessing vortex rope by using an axisymmetric turbulent swirling flow model? In other words, instead of averaging the measured or computed 3D velocity and pressure fields we would like to solve directly the circumferentially averaged governing equations. As a result, one could use a 2D axi-symmetric model instead of the full 3D flow simulation, with huge savings in both computing time and resources. In order to answer this question we first compute the axisymmetric turbulent swirling flow using available solvers by introducing a stagnant region model (SRM), essentially enforcing a unidirectional circumferentially averaged meridian flow as suggested by the experimental data. Numerical results obtained with both models are compared against measured axial and circumferential velocity profiles, as well as for the vortex rope location. Although the circumferentially averaged flow field cannot capture the unsteadiness of the 3D flow, it can be reliably used for further stability analysis, as well as for assessing and optimizing various techniques to stabilize the swirling flow. In particular, the methodology presented and validated in this paper is particularly useful in optimizing the blade design in order to reduce the stagnant region extent, thus mitigating the vortex rope and expending the operating range for Francis turbines.

Construction of Virtual Images for a Benchmark Test of 3D-PTV Algorithms for Flows

  • Hwang, Tae-Gyu;Doh, Deog-Hee;Hong, Seong-Dae;Kenneth D. Kihm
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1185-1194
    • /
    • 2004
  • Virtual images for PIV are produced for the construction of a benchmark test tool of PTV systems, Camera parameters obtained by an actual experiment are used to construct the virtual images, LES(Large Eddy Simulation) data sets of a channel flow are used for generation of the virtual images, Using the virtual images and the camera's parameters. three-dimensional velocity vectors are obtained for a channel flow. The capabilities of a 3D-PTV algorithm are investigated by comparing the results obtained by the virtual images and those by an actual measurement for the channel flow.

NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO (공동의 폭 변화에 따른 3차원 초음속 공동 유동연구)

  • Woo, C.H.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.62-66
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation, reattachment, shock waves and expansion waves. The general cavity flow phenomena includes the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions. The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio (L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyzed and compared with the results of Rossiter's Eq.

Three-Dimensional Flow Characteristics of a Circular Impinging Jet Normally Oriented to Crossflow (주유동에 수직으로 분사되는 원형 충돌제트의 3차원 유동특성)

  • Lee, Sang Woo;Jeong, Chul Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1735-1745
    • /
    • 1998
  • Oil-film surface flow visualizations and three-dimensional flow measurements using a straight five-hole probe have been conducted for a circular impinging jet which is normally oriented to the crossflow in a channel. Throughout the experiments, the ratio of channel height to injection hole diameter, H/D, is fixed to be 1.0, and blowing ratio is varied to be 1.0, 2.0, 3.0 and 4.0. From the surface flow visualizations for both top wall(target plate) and bottom wall, impinging jet region on the target plate can be clearly identified, and for the small value of H/D = 1.0, presence of the bottom wall changes the near-hole flow structure, significantly. The three-dimensional flow measurements show that in the dawnstream region of the injection hole, there exist a pair of counter-rotating vortices, called "scarf vortices", and the strength of the vortices strongly depends on the blowing ratio. In addition, a new flow model in the flow symmetry plane has been proposed for H/D = 1.0.

Numerical flow computation around aeroelastic 3D square cylinder using inflow turbulence

  • Kataoka, Hiroto;Mizuno, Minoru
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.379-392
    • /
    • 2002
  • Numerical flow computations around an aeroelastic 3D square cylinder immersed in the turbulent boundary layer are shown. Present computational code can be characterized by three numerical aspects which are 1) the method of artificial compressibility is adopted for the incompressible flow computations, 2) the domain decomposition technique is used to get better grid point distributions, and 3) to achieve the conservation law both in time and space when the flow is computed a with moving and transformed grid, the time derivatives of metrics are evaluated using the time-and-space volume. To provide time-dependant inflow boundary conditions satisfying prescribed time-averaged velocity profiles, a convenient way for generating inflow turbulence is proposed. The square cylinder is modeled as a 4-lumped-mass system and it vibrates with two-degree of freedom of heaving motion. Those blocks which surround the cylinder are deformed according to the cylinder's motion. Vigorous oscillations occur as the vortex shedding frequency approaches cylinder's natural frequencies.

3D Flow Simulation in the Meandering Natural Channel (사행 자연수로에서의 3차원 흐름 모의)

  • Son, Min-Woo;Baek, Kyoung-Oh;Kim, Sang-Ug
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1661-1665
    • /
    • 2006
  • In a natural river, cross sections of a channel vary according to inner or outer parts of meandering. Generally, depth of outer parts is deeper than that of inner parts. This kind of cross section change by meandering can be demonstrated by Beta distribution. The objects of this research is a 3D simulation of primary and secondary flow in the meandering natural channel. FLOW-3D program, a numerical model using CFD technique, and LES method was used for this research. 3D simulations were conducted in the channels having Beta distribution cross sections which have beds of mortar, gravel and vegetation. Two types of water stages and discharge were applied to each channel. In this research, primary flows are located in the outer parts of a top of bend and secondary flows rotate in the bottom on outer parts.

  • PDF

The use of laser Doppler blood flow to assess the effect of acute administration of vitamin D on micro vascular endothelial function in people with diabetes

  • Petrofsky, Jerrold;Alshammari, Faris;Khowailed, Iman Akef;Lodha, Riya;Deshpande, Pooja;Rajaram, Praveen;Gaikwad, Mahendra;Vadera, Vidhi
    • Physical Therapy Rehabilitation Science
    • /
    • v.2 no.2
    • /
    • pp.63-69
    • /
    • 2013
  • Objective: To assess the effect of vitamin D administration on the skin blood flow response to occlusion and heat. Design: Cross-sectional study. Methods: Twenty age matched subjects; 10 who had diabetes and 10 who were controls were administered 4,000 IU of vitamin D3 for 3 weeks at breakfast. The function of the endothelial cells was evaluated in 2 ways; first, the response to 4 minutes of vascular occlusion of the skin was measured with a laser Doppler flow meter. Second, the skin blood flow response to local heat at 42 degrees C for 6 minutes was examined. Results: The results of the experiments showed that the blood flow response to heat was reduced after 3 weeks administration of vitamin D in the subjects with diabetes and in the control subjects (p<0.05). The response to occlusion was not significantly different within each group before and after vitamin D administration, but the group with diabetes had a significantly lower blood flow response to occlusion than did the controls (p<0.05). Conclusions: Acute doses of vitamin D may impair nitric oxide production and reduce blood flow to tissue during stressors in people with diabetes.

Analysis of Flow Velocity in the Channel according to the Type of Revetments Blocks Using 3D Numerical Model (3차원 수치모델을 활용한 호안 블록 형상에 따른 하도 내 유속 분석)

  • Dong Hyun Kim;Su-Hyun Yang;Sung Sik Joo;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.9-18
    • /
    • 2023
  • Climate change affects the safety of river revetments, especially those associated with external flooding. Research on slope reinforcement has been actively conducted to enhance revetment safety. Recently, technologies for producing embankment blocks using recycled materials have been developed. However, it is essential to analyze the impact of block shapes on the flow characteristics of exclusion zones for revetment safety. Therefore, this study investigates the influence of revetment block shapes on the hydraulic characteristics of revetment surfaces through 3D numerical simulations. Three block shapes were proposed, and numerical analyses were performed by installing the blocks in an idealized river channel. FLOW-3D was used for the 3D numerical simulations, and the variations in maximum flow velocity, bed velocity beneath the revetment, and maximum shear stress were analyzed based on the shapes of the revetment blocks. The results indicate that for irregularly sized and spaced revetment blocks, such as the natural stone-type vegetation block (Block A), when connected to the revetment in an irregular manner, the changes in flow velocity in the revetment installation zone are more significant than those for Blocks B and C. It is anticipated that considering the topographical characteristics of rivers in the future will enable the design of revetment blocks with practical applicability in the field.