• Title/Summary/Keyword: flow tubes

Search Result 643, Processing Time 0.023 seconds

A Generalized Empirical Correlation on the Mass Flow Rate through Adiabatic Capillary Tubes with Alternative Refrigerants (대체냉매를 적용한 일반화된 모세관의 유량예측 상관식)

  • 최종민;장용희;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.744-750
    • /
    • 2003
  • The performance of adiabatic capillary tubes are measured to provide the database for a generalized correlation. Test conditions and capillary tube geometries are selected to cover a wide range typically observed in air-conditioning and heat pump applications. Based on extensive experimental data for R22, R290, and R407C measured in this study, a generalized correlation for refrigerant flow rate in adiabatic capillary tubes is developed by implementing dimensionless parameters for tube inlet conditions, capillary tube geometry, and refrigerant properties. The correlation yields good agreement with the present data for R22, R290, and R407C with average and standard deviations of 0.9% and 5.0%, respectively. In addition, approximately 97% of the data for Rl2, R134a, R152a, R410A, and R600a obtained in the open literature are correlated within a relative deviation of $\pm$ 15%.

Numerical prediction of transient hydraulic loads acting on PWR steam generator tubes and supports during blowdown following a feedwater line break

  • Jo, Jong Chull;Jeong, Jae Jun;Yun, Byong Jo;Kim, Jongkap
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.322-336
    • /
    • 2021
  • This paper presents a numerical prediction of the transient hydraulic loads acting on the tubes and external supports of a pressurized water reactor (PWR) steam generator (SG) during blowdown following a sudden feedwater line break (FWLB). A simplified SG model was used to easily demonstrate the prediction. The blowdown discharge flow was treated as a flashing flow to realistically simulate the transient flow fields inside the SG and the connected broken feedwater pipe. The effects of the SG initial pressure or the broken feedwater pipe length on the intensities or magnitudes of transient hydraulic loads were investigated. Then predictions of the decompression pressure wave-induced impulsive pressure differential loads on SG tubes and the transient blowdown loads on SG external supports were demonstrated and the general aspects of transient responses of such transient hydraulic loads to the FWLB were discussed.

Study on Pressure drop characteristics in HTS cable core with two flow passages

  • Lee, Jun-Kyoung;Kim, Seok-Ho;Kim, Hae-Joon;Cho, Jeon-Wook
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.4
    • /
    • pp.33-37
    • /
    • 2008
  • The main objective of this study is to identify the pressure drop characteristics of coolant flow passages of 154kV/1GVA High Temperature Superconducting (HTS) power cable, experimentally. The passages were consisted of two parts, the one is the circular path with spiral ribs in the core to cool the cable conductor layer and the other is annular path with spirally corrugated outer wall to cool the shield layer. Thus the experiments to acquire the pressure drop data were performed with two types of circular spiral tubes and eight types of the concentric annuli in various range of Reynolds number. The pressure drops in the core tubes and the annuli were much higher than those in the tubes with smooth surface. Therefore, modified correlations to present the experimental results in each flow passage were suggested.

Flow Boiling Heat Transfer of R-410A in 0.5mm & 3.0mm Diameter Horizontal Tube (R-410A 비등열전달에 미치는 미세관경 0.5mm와 3.0mm의 영향)

  • Pamitran, A.S.;Choi, Kwang-Il;Oh, Jong-Taek;Hrnjak, Pega
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.154-159
    • /
    • 2008
  • Two-phase flow boiling heat transfer of R-410A in horizontal small tubes was reported in the present experimental study. The local heat transfer coefficients were obtained over a heat flux range of 5 to 40 kW/$m^2$, a mass flux range of 170 to 600 kg/$m^2s$, a saturation temperature range of 3 to $10^{\circ}C$, and quality up to 1.0. The test section was made of stainless steel tubes with inner diameters of 0.5 and 3.0 mm, and lengths of 330 and 3000 mm, respectively. The section was heated uniformly by applying a direct electric current to the tubes. The effects on heat transfer of mass flux, heat flux, inner tube diameter, and saturation temperature were presented. The experimental heat transfer coefficient is compared with six existing heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model for R-410A in small tubes was developed with mean deviation of 10.13%.

  • PDF

Study on Pressure Drop Characteristics in Multi-Channel Tubes for Automotive Condenser (자동차 응축기용 다채널관의 압력강하 특성에 관한 연구)

  • Jeon, Chang Duk;Chung, Jae Won;Lee, Jinho;Kang, Shin Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.881-892
    • /
    • 1999
  • Experiment was performed to study the characteristics of pressure drop of multi-channel tubes for automotive condenser using HFC-134a. Single phase liquid and two phase flow pressure drop were measured in one rectangular plain and three micro-fin tubes with 10 channels. Data are presented for the following range of variables: mass flux(200 to $600kg/m^2s$), and inlet saturation pressure of the refrigerant(1.0 and 1.6MPa). For subcooled flow, pressure drops are 10% and 12% higher than that predicted by the Petukhov equation with hydraulic diameter respectively. Two-phase flow pressure drop are compared with the previously proposed correlations, and well predicted by modified correlation that was derived from Traviss correlation. and correlated within -30~+20%. Also experimental data are correlated within -56%~+18% by Webb's prediction method based on the equivalent mass velocity concept originally proposed by Akers et al.

Numerical and analytical predictions of nuclear steam generator secondary side flow field during blowdown due to a feedwater line break

  • Jo, Jong Chull;Jeong, Jae-Jun;Moody, Frederick J.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.1029-1040
    • /
    • 2021
  • For the structural integrity evaluation of pressurized water reactor (PWR) steam generator (SG) tubes subjected to transient hydraulic loading, determination of the tube-to-tube gap velocity and static pressure distributions along the tubes is prerequisite. This paper addresses both computational fluid dynamics (CFD) and analytical approaches for predicting the tube-to-tube gap velocity and static pressure distributions during blowdown following a feedwater line break (FWLB) accident at a PWR SG. First of all, a comparative study on CFD calculations of the transient velocity and pressure distributions in the SG secondary sides for two different models having 30 or no tubes is performed. The result shows that the velocities of sub-cooled water flowing between any adjacent two tubes of a tubed SG model during blowdown can be roughly estimated by applying the specified SG secondary side porosity to those of the no-tubed SG model. Secondly, simplified analytical approximate solutions for the steady two-dimensional SG secondary flow velocity and pressure distributions under a given discharge flowrate are derived using a line sink model. The simplified analytical solutions are validated by comparing them to the CFD calculations.

Characteristics of Heat Transfer and Pressure Drop for Spirally Indented Tubes with Wire Coil Inserts (와이어 코일이 삽입된 나선형 내면가공관의 열전달 및 압력강하 특성)

  • Choi, In-Su;Park, Byung-Duck;Nam, Sang-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.395-401
    • /
    • 2001
  • The characteristics of heat transfer and pressure drop through tubes has been investigated experimentally for a compound heat transfer enhancement. The test tubes were spirally indented tubes with wire coil inserts which had a various combinations of pitch and helix angles. Pure water was used as working fluids for the experiments, Heat transfer coefficients and friction factors of the test tubes were evaluated from the values of measured temperatures, flow rates and pressure drops. An performance evaluation was performed to find an optimal combination of spirally indented tubes with wire coil inserts. When the helix angle of wire coil insert are $71^{\circ}-72^{\circ}$, the best heat transfer enhancement was shown. The friction factor was 9 - 13 times higher than those in smooth tubes, and the heat transfer was enhanced a maximum of 500%.

  • PDF

Flare Test Evaluation and Stress Prediction of PWR's Steam Generator Tubes

  • Woo-Gon Kim;Chang Kyu Rhee;Il-Hiun Kuk
    • Nuclear Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.555-567
    • /
    • 1998
  • Alloy 600 and 690 steam generator tubes fabricated in Korea were evaluated by flare tests according to ASTM standards. The stress acting in the tube elements during the tests was predicted. All the tubes, including alleys 600 and 690, satisfied the requirement of a 30% or 35% O.D expansion. Flow curves obtained from the flare test were found to be higher in alloy 690 tubes than in alloy 600 ones. The difference between alloy 600 and 690 tubes increased gradually with flaring percentage (F.P,%). An effective stress corresponding to mean yield stress was introduced and calculated. It showed that the prediction values were in good agreement with the measured ones for all the 690 and 600 alloy tubes. It became possible to predict the amount of acting stresses within tubes during expansion process.

  • PDF

Numerical Simulation of Boiling 2-Phase Flow in a Helically-Coiled Tube (나선형코일 튜브 비등2상 유동 수치해석)

  • Jo J. C.;Kim W. S.;Kim H. J.;Lee Y. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.49-55
    • /
    • 2004
  • This paper addresses a numerical simulation of the flow and heat transfer in a simplified model of helically coiled tube steam generator using a general purpose computational fluid dynamic analysis computer code. The steam generator model is comprised of a cylindrical shell and helically coiled tubes. A cold feed water entered the tubes is heated up, evaporates. and finally become a superheated steam with a large amount of heat transferred continuously from the hot compressed water at higher pressure flowing counter-currently through the shell side. For the calculation of tube side two-phase flow field formed by boiling, inhomogeneous two-fluid model is used. Both the internal and external turbulent flows are simulated using the standard k-e model. The conjugate heat transfer analysis method is employed to calculate the conduction in the tube wall with finite thickness and the convections in the internal and external fluids simultaneously so as to match the fluid-wall-fluid interface conditions properly. The numerical calculations are peformed for helically coiled tubes of steam generator at an integral type pressurized water reactor under normal operation. The effects of tube-side inlet flow velocity are discussed in details. The results of present numerical simulation are considered to be physically plausible based on the data and knowledge from previous experimental and numerical studies where available.

  • PDF

A Study on the Heat Transfer Phenomena in Coiled Tubes with Variable Curvature Ratios (곡률비가 다양한 코일 튜브에서의 열전달현상에 관한 연구)

  • Han, Kyuil;Park, Jong-Un
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1509-1520
    • /
    • 1998
  • An experiment was carried out for the fully developed turbulent flow of water in tube coils on the condition of uniform heat flux. The present work was conducted for various ranges for Dean number(1794~1321), Prandtl number (2.5~4.5), curvature ratio parameters (22~60). Heat transfer to steady viscous flow in coiled tubes of circular cross section was studied for fully developed velocity and temperature fields under the thermal boundary condition of uniform heat flux. The peripherally local Nusselt number correlated as a function of Dean and Prandtl numbers. We studied the flow in heat coiled tubes under the influence of both centrifugal and buoyancy forces in order to gain insight into the flow pattern. In the present study, we obtained three emperical formulas, $Nu_v=0.0231Re^{0.84}Pr^{0.4}(a/R)^{0.13}$ (vertical) $Nu_c=0.0241Re^{0.86}Pr^{0.4}(a/R)^{0.08}$ (corrugated) $Nu_h=0.0227Re^{0.84}Pr^{0.4}(a/R)^{0.09}$ (horizontal).