• Title/Summary/Keyword: flow tubes

Search Result 642, Processing Time 0.024 seconds

The Experimental Study on the Performance of Two-Phase Loop Thermosyphone System for Electronic Equipment Cooling (전자장비 냉각을 위한 2상 순환형 써모사이폰 시스템의 성능에 대한 실험적 연구)

  • Kang, In-Seak;Choi, Dong-Kyu;Kim, Taig-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.415-424
    • /
    • 2004
  • Cooling the electronic equipment is one of the major focal points of the design process and the key to successful product launch. The two-phase loop thermosyphone which is a good candidate among many available options was investigated fur cooling of the high power amplifiers. The system is composed of evaporator which contains 6 parallel cold plates, fan cooled condenser, gas-liquid separator, and interconnecting tubes. Experiments were performed for several refrigerant charging values, hs and as a experiment result, the optimum charging value fur this system was proposed. In order to optimize the system design, the operating cycle pressure and inlet/outlet temperatures of evaporator and condenser are measured and analyzed. The effect of the three parameters such as flow rate and temperature of condenser cooling air, and thermal load on the evaporator are investigated. The lower the operating pressure and the cycle temperatures are also better to prevent the leakage of the system. The system invesigated in this paper can be directly used for cooling of a real unmanned wireless communication station.

Characteristic of Electric Generation for the Water Flow Rate in Thermoelctric Generator Using Hot Water (온수를 이용한 열전발전기에서 유량변화에 따른 발전 특성)

  • Woo, Byung-Chul;Lee, Hee-Woong;Suh, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1333-1340
    • /
    • 2002
  • The objective of this study is to develop a thermoelectric generation system which converts unused energy from close-at-hand sources such as garbage incineration heat and industrial exhaust etc. into electricity. This paper presents applicability of a commercially available thermoelectric generator f3r waster heat recovery. The test facility consists of water heater, pump, thermoelectric module and aluminium tubes and hot and cold water is used as heat source and sink fluids. It is shown that the three components of thermoelectric research exist in manufacturing a thermoelectric generator. The first component is fabrication of thermoelectric materials, the second is manufacturing of thermoelectric generator with 32 thermoelectric modules. The last one is characteristic measuring of thermoelectric generator with 32 thermoelectric modules of two types, cooling and power purpose. It was found that the rate of cold and hot water is 25 and 37 liter per minute and the maximum power of thermoelectric generator is 28Watts and its efficiency is 1.04%.

Determination of Cyclogram for Liquid-Propellant Rocket Engine

  • Ha, Seong-Up;Kwon, Oh-Sung;Lee, Jung-Ho;Kim, Byoung-Hun;Kang, Sun-Il;Han, Sang-Yeop;Cho, In-Hyun;Lee, Dae-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.59-66
    • /
    • 2002
  • A vertical test stand based on launcher propulsion system was constructed and several tests for the determination of cyclogram were carried out. To make an accurate estimation, static and dynamic pressures were measured and analyzed. Especially, static pressure measurements using fast response sensors without extension tubes were used to determine operation sequence more evidently. The standard operation times of final valves were determined in cold flow tests with an engine head, and fire formation time in combustion chamber was checked in an ignition test with an ignitor only. On the basis of these tests, ignition sequence was established and combustion test cyclogram was finally determined. According to combustion test, test results were well matched with the determined cyclogram within 0.05 sec.

Corrosive Wear of Alloy 690 Tubes in Alkaline Water

  • Hong, Seung Mo;Jang, Changheui;Kim, In Sup
    • Corrosion Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.126-131
    • /
    • 2009
  • The interaction between wear and corrosion can significantly increase total material losses in water chemistry environment. The corrosive wear tests of a PWR steam generator tube material (Alloy 690) against the anti vibration bar material (409 SS) were performed at room temperature. The tests were performed in alkaline water chemistry conditions. NaOH solution was selected for test condition to investigate the corrosive wear effect of steam generator tube material in alkaline pH condition without other factors. The flow induced vibration can caused tube damage and the corrosion can be occurred by water chemistry. The test results showed that, in the alkaline solution at pH 13.9, the corrosion current density was increased about ten times than that in the distilled water. And wear rate at pH 13.9 was increased about ten times from that at neutral condition. However, the wear rate was decreased with time. The decrease would be attributed to the change in roughness of specimen or sub-layer of the worn surface with time. From microstructure observation, severe abrasive shape and several wear debris were found. From those results, it could infer that the oxide film on Alloy 690 changed to easily breakable one in the alkaline water, and then abrasion with corrosion became the main wear mechanism.

A study on the formability in warm hydroforming of Al 6061 seamless tube (온간액압성형공정에서 Al 6061 튜브의 소성변형특성에 관한 연구)

  • Yi, H.K.;Lee, Y.K.;Lee, J.H.;Sohn, S.M.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.318-321
    • /
    • 2006
  • In this strudy, the free-bulge test and FE analysis have been used to define the fracture criteria based on the cockroft and Latham's criterion in warm hydroforming of Al 6061 tube. Full annealing and T6 treatment for heat treatment of Al 6061 tube ware used in this study. As-extruded, full annealed and T6-treated Al 6061 seamless tubes were prepared. To evaluate the hydroformability, uni-axial tensile test and bulge test were performed between room temperature and $200^{\circ}C$. And measured flow stress was used to simulate the warm hydroforming. A commercial FEM code, DEFORM-$2D^{TM}$, was used to calculate the damage value. A forming limit based ductile fracture criteria has been proposed by the results of experimental and FE analysis. The calculated values for fracture criteria will be efficient to predict the forming limit in hydroforming for real complex shaped part.

  • PDF

The Evaporation Flow Patterns and Heat Transfers of R-22 and R-134a in Small Diameter Tubes (세관내 R-22 and R-134a의 증발 유동양식과 열전달)

  • Son, Chang-Hyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.275-283
    • /
    • 2007
  • 본 논문은 세관(ID<7 mm) 내 R-22와 R-134a의 증발 열전달과 유동양식에 대한 실험적 연구이다. R-22와 R-134a의 유동양식을 관찰하기 위해 내경 2와 8 mm의 파이렉스 튜브를 사용하였고, 열전달 계수는 내경 1.77, 3.35, 5.35 mm의 수평 평활동관에 대해서 측정하였다. 증발 유동양식에서 내경 2 mm의 환상류 영역이 내경 8 mm에 비해 저건도 영역에서 발생하는 것을 확인할 수 있었고, 내경 2 mm의 유동양식은 Mandhane의 선도와 많은 오차를 보였다. 세관(ID<7 mm) 내 증발 열전달 계수는 종래의 대구경관(ID>7 mm)에 비해 관직경에 대한 영향이 많이 나타나는 것을 알 수 있었다. 내경 1.77 mm의 열전달 계수는 내경 3.36 mm와 5.35 mm에 비해서 20내지 30% 정도 높은 것을 나타났다. 또한 종래의 열전달 상관식(Shah's, Jung's, Kandlikar's and Oh-Katsuda's correlation)과 비교한 결과, 실험 데이터는 상관식과 많은 이탈 정도를 보였다. 따라서 실험데이타를 기초로 세관내 R-22와 R-134a에 적용할 수 있는 증발 열전달 상관식을 새로이 제안하였다.

Effect of Convection on the Solidification Microstructure of Hyper-Peritectic Systems (과포정계 합금의 응고조직에 미치는 대류의 영향)

  • Park, Byeong-Gyu;Kim, Mu-Geun;Park, Jang-Sik;Kim, Geun-O;Choe, Jae-Gwang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.958-966
    • /
    • 2001
  • This study has examined the microstructural development in the Bridgman type directional solidification of hyper-peritectic Sn-Cd alloys, and the temperature and flow field have been numerically simulated to see if there is any change induced by convection. The directional solidification experiments carried out in quartz tubes with inside diameters of 0.4∼6mm showed that the resulting microstructures are clearly dependent on the size of tube diameters. The bigger ampoules where the effect of convection is highly expected produced saw-like structures resulting from the primary $\alpha$ and peritectic $\beta$ phase growing together at a planar solid-liquid front, with the former being surrounded by the latter. In the smaller ampoules, where the effect of convection is expected low however, the saw structure disappears, and as is understood from the theoretical prediction based on diffusion-controlled solidification the initial growth of the primary $\alpha$ phase is replaced by the nucleation of the peritectic $\beta$ phase whose growth continues to the end of the solidification.

Experimental Evaluation on the Thermal Stress Due to Ice Plugging of Tubes in Nuclear Power Plant (배관의 Ice Plugging에 의하여 유발되는 열응력의 실험적 규명)

  • Park, Young-Don;Lee, Min-Woo;Ku, Tae-Wan;Kim, Kui-Soon;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1094-1103
    • /
    • 1999
  • Ice-plugging of tube in nuclear power plant has been widely used for the purpose of preventing flow of the tube temporarily like a valve. Most common plugging method employs Liquid Nitrogen Gas of $-196^{\circ}C$. According to the change of tube materials and its dimension, the thermal stress caused from the application of the frozen gas can be varied. In this research, a series of experiments have been carried out to inspect the effect of tube geometry on thermal stresses induced due to ice-plugging. Two typical dimension of stainless and mild steels of 3 and 6 inch diameters were used for the experiments. Each critical spots were checked using strain rosette gages. Another inspection was made on the pressure and temperature of the fluid. It is shown that significant thermal stress level which can cause plastic deformation of failure has not been noticed in this series of experiments.

Cause of and Solution for Damage to STS310S Tube in Heat Exchange Devices (열교환기 STS310S 튜브의 손상 원인 및 대책)

  • Kim, Jin Wook;Kim, Seon Hwa;Jeong, Jin Hyuk;Kim, Young Soo;Nam, Ki Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.187-193
    • /
    • 2015
  • The STS310S tube has excellent heat transfer ability and is widely used as the material for heat transfer tubes in heat exchange devices. Mixtures of gas and water flow inside the tube whereas hot flame flows outside it. In this environment, the material of the tube may undergo embrittlement, which can cause leakage. Cracks can propagate from the inside of the tube to its outside and result in brittle fracture. This study identified the cause of brittle fracture in the STS310S tube through experiments and discussion, and proposed solutions to prevent fracture.

Assessment of CHF Correlations for Internally Heated Concentric Annulus Channels

  • Park, Jae-Wook;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.325-330
    • /
    • 1996
  • The existing CHF correlations for internally heated concentric annulus channels are assessed using KAIST CHF database for uniformly heated vertical annuli. Six annulus correlations (Jannsen-Kervinen. Barnett, Levitan-Lantsman, Kumamaru et al., Doerffer et al., and Bobkov et at.) are chosen for assessment based on literature survey and Groeneveld et al.'s CHF table for round tube is also assessed for comparison. Among the above correlations, two are inlet-condition type and others local conditions type. To make the comparison meaningful, the local-condition-type correlations are assessed in two ways: direct substitution method (DSM) and heat balance condition method (HBM). Totally 1174 data are classified into 10 groups based on pressure and mass flux conditions and correlations are assessed to each group separately. Prediction capability of each correlation depends on the data group and none shows the best prediction over the entire group. In overall, the correlations by Doerffer et al. and Jannsen et al. appear to be the best, but Barnett or Levitan-Lantsman correlations also show reasonable prediction for most groups. However, the low-pressure, ]ow flow CHFs are not well predicted by any correlations. The CHF table for round tubes overpredicts the CHF in annuli at fixed local conditions.

  • PDF