• 제목/요약/키워드: flow tubes

검색결과 643건 처리시간 0.027초

고체입자를 이용한 열교환기에서의 유동 및 열전달의 유한요소해석 (Finite element analysis of flow and heat transfer in solid particle moving beds of heat exchanger)

  • 이완술;윤성기;박상일
    • 대한기계학회논문집A
    • /
    • 제22권4호
    • /
    • pp.743-752
    • /
    • 1998
  • Numerical analysis for the flow and heat transfer in solid particle moving beds of heat exchangers is presented. The solid particle flow through the bundle of heat source tubes by the gravitational force. The heat energy is transferred through the direct contact of particles with the heat source tubes. The viscous-plastic fluid model and the convective heat transfer model are employed in the analysis. The flow field dominantly influences the total heat transfer in a heat exchanger. As the velocities of solid particles around the heat source tubes increase, the amount of heat transfer from the tubes increases. Some examples are presented to show the performance of the numerical model. The flow effect on the heat transfer is also studied through the examples.

유동 불균일이 전열관 튜브에 미치는 영향 (Influence on heat transfer due to uneven flow)

  • 정재헌;송정일
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.273-279
    • /
    • 2008
  • The purpose of this study is not only to evaluate thermal performance but also to find the stress behavior of heat transfer tubes under the part load operation in Heat Recovery Steam Generator. Flow analysis was performed to know the behavior of exhaust gas from gas turbine and thermal performance was calculated using distribution of hot exhaust velocity. In addition, tubes temperature during operation were gathered from actual plant to verify the uneven flow distribution under part load operation. Stress analysis was performed using tubes temperature data gathered from actual plant under both part and full load operations to know the stress behavior of tubes.

  • PDF

원형 세관내 대류비등열전달에 관한 실험적 연구 (An Experimental Study of Flow Boiling Heat Transfer inside Small-Diameter Round Tubes)

  • 추원호;방광현
    • 설비공학논문집
    • /
    • 제16권8호
    • /
    • pp.748-755
    • /
    • 2004
  • Flow boiling heat transfer in small-diameter round tubes has been experimentally studied. The experimental apparatus consisted mainly of refrigerant pump, condenser, receiver, test section of a 1.67 mm inner-diameter round tube and pre-heater for control of refrigerant quality at the inlet of test section. To investigate the effect of bubble nucleation site characteristics of different tube materials, three different tubes of copper, aluminum and brass were used. The ranges of the major experimental parameters were 5∼30 ㎾/$m^2$ of the wall heat flux, 0.0∼0.9 of the inlet vapor quality and the refrigerant mass flux was fixed at 600 kg/$m^2$s. The experimental results showed that the flow boiling heat transfer coefficients in small tubes were affected only by heat flux, but independent of mass flux and vapor quality. The effect of tube material on flow boiling heat transfer was observed small.

비자성체 이중관의 원격장 에너지 전달 경로 (Remote Field Energy Flow Path at Nonmagnetic Coaxial Tubes)

  • 이재경
    • 비파괴검사학회지
    • /
    • 제21권5호
    • /
    • pp.526-531
    • /
    • 2001
  • 공통축 형태로 배치된 비자성체 이중관에 있어서 유한요소해석 상용 소프트웨어와 실험적인 방법을 각각 이용하여 원격장 와전류 에너지의 전달 경로를 연구하였다. 연구결과 이중관에 있어서 원격장 와전류 에너지는 두 관 사이의 공간을 따라 흐르는 것이 아니라, 단일 튜브의 경우와 마찬가지로 외측 튜브의 외면을 따라 흐름을 확인하였다. 이는 원격장 와전류 효과의 관벽투과 특성이 이중관에 있어서도 유효함을 보여주는 것이다. 따라서, 중수로형 핵연료 채널과 같은 이중관 형태를 대상으로 내관 및 외관의 내 외부 결함 탐상, gap 분포 및 지지대의 위치 확인 등에 원격장 와전류 방법의 관벽투과 특성이 응용될 수 있음을 보였다.

  • PDF

유연운전에 따른 석탄화력보일러 수계통 튜브에서의 이상 유동가속부식(Two-Phase Flow Accelerated Corrosion) 고찰 (A Two-Phase Flow Accelerated Corrosion Study on Water Wall Tube of Coal-Fired Boiler According to Flexible Operation)

  • 김상호;이승민;이재홍
    • Corrosion Science and Technology
    • /
    • 제23권3호
    • /
    • pp.246-254
    • /
    • 2024
  • Recently, coal-fired power plants are experiencing many problems that they have never experienced before due to an increase in flexible operation. In particular, a two-phase flow accelerated corrosion on water wall tubes in a boiler has not been detected overseas or domestically. There is no response plan to deal with such corrosion problem either. However, oxide film damage and tube material corrosion due to a two-phase flow accelerated corrosion are being discovered on water wall boiler tubes of domestic coal-fired power plants recently. If this situation is severe, it can cause enormous damage such as tube rupture. Therefore, in this paper, in order to prepare a response plan for a two-phase flow accelerated corrosion on water wall tubes in the future, differences between a two-phase flow accelerated corrosion and a single-phase flow accelerated corrosion were investigated and an example of discovery of a two-phase flow accelerated corrosion on water wall tubes was presented.

협착이 발생된 분기관내 비뉴턴유체의 유동특성 연구 (Flow Characteristics of Non-Newtonian Fluids in the Stenosed Branch Tubes)

  • 서상호;유상신;노형운
    • 설비공학논문집
    • /
    • 제8권3호
    • /
    • pp.307-316
    • /
    • 1996
  • The objective of present study is to obtain information on the stenosis effects in the branch tubes for industrial piping system and atherogenesis processing in human arteries. Numerical solutions for flows of Newtonian and non-Newtonian fluids in the branch tubes are obtained by the finite volume method. Centerline velocity and pressure along the bifurcated tubes for water, blood and aqueous Separan AP-273 solution are computed and the numerical results of blood and the Separan solution are compared with those of water. Flow phenomena in the stenosed branch tubes are discussed extensively and predicted effectively. The effects of stenosis on the pressure loss coefficients are determined.

  • PDF

이중관에서 홈형튜브가 압력강하에 미치는 효과 (Effects of the Groove Type Tubes on Friction Factors in the Annuli)

  • 안수환;손강필;신승화
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.100-105
    • /
    • 2001
  • The present paper is to present the results of studied of pressure drop in annuli with corrugated and spirally fluted inner tubes for the turbulent flow regime. To understand the underlying physical phenomena responsible for heat transfer enhancement, flow mechanism documented elsewhere are combined with pressure drop measurements to confirm the friction factors obtained from the annuli with the grooved inner tubes for the Reynolds number of 1000 to 8000. Friction factors were found to be functions of trough depth, pitch and angle, and the annulus radius ratio. friction factor increases in the spirally fluted tubes were larger than those in the corrugated tubes.

  • PDF

Two-Phase Flow Distribution and Phase Separation Through Both Horizontal and Vertical Branches

  • Tae, Sang-Jin;Keumnam Cho
    • Journal of Mechanical Science and Technology
    • /
    • 제17권8호
    • /
    • pp.1211-1218
    • /
    • 2003
  • The present study investigated two-phase flow distribution and phase separation of R-22 refrigerant through various types of branch tubes. The key experimental parameters were the orientation of inlet and branch tubes (horizontal and vertical), diameter ratio of branch tube to inlet tube (1 and 0.61), mass flux (200-500 kg/㎡s), and inlet quality (0.1-0.4). The predicted local pressure profile in the tube with junction was compared and generally agreed with the measured data. The local pressure profile within the pressure recovery region after the junction has to be carefully investigated for modeling the pressure drop through the branch. The equal flow distribution case can be found by adjusting the orientation of the inlet and branch tubes and the diameter ratio of the branch tube to the inlet tube. The T-junction with horizontal inlet and branch tubes showed the nearly equal phase distribution ratio. The quality at the branch tube varied from 0 to 1 as the orientation of the branch tube changed, while it varied within${\pm}$50% as the orientation of the inlet tube changed.

R407C 및 R290 냉매에 대한 모세관내 유동특성 실험 및 모델링 (Experimentation and modeling on the flow of R407c and R290 through capillary tubes)

  • 김용찬;조일용;최종민
    • 설비공학논문집
    • /
    • 제11권4호
    • /
    • pp.492-498
    • /
    • 1999
  • Mass flow rates of R407C and R290 through capillary tubes were measured with various capillary tube geometries and flow conditions. For all refrigerants tested in the present study, mass flow rate through the capillary tube was strongly dependent on the condensing pressure, subcooling and capillary length and diameter. The flow rate of R407C was 5~10[%] higher than that of R22 at the same condensing temperature and degree of subcooling, while flow rate for R290 was 40[%] lower than that for R22. Based on experimental results, an empirical correlation was developed using Pi theorem to predict the mass flow rate through capillary tubes. The predicted flow rates using the model were consistent with the experimental data within ${\pm}$10[%].

  • PDF

마이크로채널관 내 2상 유량분배, 상분리 및 압력강하 (Two-Phase Flow Distribution, Phase Separation and Pressure Drop in Multi-Microchannel Tubes)

  • 조홍기;조금남;윤백;김영생;김정훈
    • 설비공학논문집
    • /
    • 제16권9호
    • /
    • pp.828-837
    • /
    • 2004
  • The present study investigated two-phase flow distribution, phase separation and pressure drop in multi-microchannel tubes under adiabatic condition. The test section consisted of inlet and outlet headers with the inner diameter of 19.4㎜ and 15 parallel microchannel tubes. Each microchannel tube brazed to the inlet and outlet headers and had 8 rectangular ports with the hydraulic diameter of 1.32㎜. The key experimental parameters were orientation of header (horizontal and vertical), flow direction of refrigerant into the inlet header (in-line, parallel and cross flow) and inlet quality (0.1, 0.2 and 0.3). It was found that the orientation of the header had relatively large effect on the flow distribution and phase separation, while the inlet quality didn't affect much on them. The horizontal header showed the better flow distribution and phase separation characteristics than the vertical one. The parallel flow condition with the horizontal header showed the best performance for the flow distribution and phase separation characteristics under the test conditions. Two-phase pressure drops through the microchannel tubes with the horizontal header were higher than those of the microchennel tubes with the vertical header due to gravitational effect.