• 제목/요약/키워드: flow structure

검색결과 4,655건 처리시간 0.034초

Experimental Analysis of Flow Fields inside Intake Heads of a Vacuum Cleaner

  • Daichin;Lee, Sang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.894-904
    • /
    • 2005
  • The flow structure inside the intake head greatly affects the working efficiency of a vacuum cleaner such as suction power and aero-acoustic noise. In this study, the flow inside intake heads of a vacuum cleaner was investigated using qualitative flow visualization and quantitative PIV (Particle Image Velocimetry) techniques. The aerodynamic power, suction efficiency and noise level of the intake heads were also measured. In order to improve the performance of the vacuum cleaner, inner structure of the flow paths of the intake head, such as trench height and shape of connection chamber were modified. The flow structures of modified intake heads were compared with that of the original intake head. The aero-acoustic noise caused by flow separation was reduced and the suction efficiency was also changed due to flow path modification of intake head. In this paper, the variations of flow fields for different intake heads are presented and discussed together with results of aerodynamic power, suction efficiency and noise level.

초음속 유동장에 놓인 공동 유동에 대한 연구 (The Study on Cavity Flow in Supersonic flow field)

  • 권기범;윤용현;홍승규
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.139-143
    • /
    • 2003
  • In this study the numerical analyses on cavity flow in supersonic flow field are conducted. According to the length-to-depth ratio of cavity, the shear layer is changed, consequently influencing on vortex structure inside the cavity. Especially in case the fluid flow outside cavity impinges inside the cavity, the oscillation of the cavity flow is identified. Another result is that though the cavity flow shows the unsteadiness, characteristics of cavity flow can be represented by pressure coefficients converged.

  • PDF

Characteristics of Vortex Structure and Its Shear Velocity in a Scour Hole

  • 김진홍
    • 한국농공학회지
    • /
    • 제34권E호
    • /
    • pp.45-59
    • /
    • 1992
  • At downstream part of the hydraulic structures such as spiliway or drainage gate, jet flow can occur by gate opening. If stream bed is not hard or bed protection is not sufficient, scour hole will be formed due to high shear stress of the jet flow. We call this primary scour. Once the scour hole is formed, a vortex occurs in it and this vortex causes additional scour. We call this secondary scour. The primary scour proceeds to downstream together with flow direction but the secondary one proceeds to upstream direction opposite to it. If the secondary one continues and reaches to the hydraulic structure, it can undermine the bottom of hydraulic structure and this will lead to failure of structure itself. Thus, it is necessary to know the physical features of the vortex structure in a scour hole, which is the main mechanism of the secondary scour. This study deals with the characteristics of the vortex structure and its shear stress which causes the secondary scour.

  • PDF

분지관 혼합기의 난류혼합에 대한 유동가시화 연구(III) (Flow Visualization Study on the Turbulent Mixing of Two Fluid Streams (III))

  • 김경천;신대식;박기영
    • 대한기계학회논문집B
    • /
    • 제22권11호
    • /
    • pp.1571-1581
    • /
    • 1998
  • A flow visualization study was carried out for the branch pipe mixing flow in which a jet was issued normally to the fully developed pipe flow. An instantaneous laser tomographic method was used for cross flow Reynolds numbers based on the cross flow diameter D ranged $Re_{cf}=5.26{\times}10^3{\sim}1.13{\times}10^4$, diameter ratios d/D = 0.1 ~ 0.2 and velocity ratios R = 0.5 ~ 10. Oil mist with the size of about $10{\mu}m$ diameter was used for the scattering particle. The main purpose of this study was to reveal the physical mechanism and the structure of vortices formation with varying the velocity ratios and diameter ratios in the branch pipe flow. It was found that the physical mechanism and the structures of vortices formation were quite different depending on the velocity ratios. Particularly in the case of R < 1, the typical vortex shows single loop shape and that for the case of R > 1 depicts mushroom-like structure in the cross flow jet.

Fluid-structure interactions of physiological flow in stenosed artery

  • Buriev, Bahtiyor;Kim, Tae-Dong;Seo, Tae-Won
    • Korea-Australia Rheology Journal
    • /
    • 제21권1호
    • /
    • pp.39-46
    • /
    • 2009
  • Atherosclerosis is a disease that narrows, thickens, hardens, and restructures a blood vessel due to substantial plaque deposit. The geometric models of the considered stenotic blood flow are three different types of constriction of cross-sectional area of blood vessel; 25%, 50%, and 75% of constriction. The computational model with the fluid-structure interaction is introduced to investigate the wall shear stresses, blood flow field and recirculation zone in the stenotic vessels. The velocity profile in a compliant stenotic artery with various constrictions is subjected to prescribed physiologic waveform. The computational simulations were performed, in which the physiological flow through a compliant axisymmetric stenotic blood vessel was solved using commercial software ADINA 8.4 developed by finite element method. We demonstrated comparisons of the wall shear stress with or without the fluid-structure interaction and their velocity profiles under the physiological flow condition in the compliant stenotic artery. The present results enhance our understanding of the hemodynamic characteristics in a compliant stenotic artery.

진동원으로부터 전달되는 2차원 구조물의 진동파워흐름에 관한 연구 (A Study on Vibration Power Flow of 2-Dimension Structure Travelling from the Source)

  • 노영희;김동영;홍도관;권용수;안찬우;한근조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.879-882
    • /
    • 2002
  • To control the vibration and sound of structure, it is important to analyze the dynamic action of structure. And through those analysis, the vibration source and the flow path is understood. To grasp that, when the two-dimension plate structure is shaken by a harmonic point excitation with the natural frequency using the finite element method, this paper presents the relation between vibration power flow and mode shape. As those results present to vector flow, the vibration power flow is visualized.

  • PDF

Nonlinear Characteristics of Low-speed Flow Induced Vibration for the Safety Design of Micro Air Vehicle

  • 장태진;김동현;이인
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.873-881
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of an equivalent airfoil system of MAV have been investigated in low Reynolds number flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-Stokes equations. The present fluid/structure interaction analysis is based on one of the most accurate computational approach with computational fluid dynamics (CFD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed for the low Reynolds region that has a dominancy of flow viscosity. The effects of Reynolds number and initial angle of attack on the fluid/structure coupled vibration instability are shown and the qualitative trend of FIV phenomenon is investigated.

Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction

  • Xu, Yun-ping;Zheng, Zhou-lian;Liu, Chang-jiang;Wu, Kui;Song, Wei-ju
    • Wind and Structures
    • /
    • 제26권6호
    • /
    • pp.355-367
    • /
    • 2018
  • This paper studies the aerodynamic stability of a tensioned, geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction. Considering flow separation, the wind field around membrane structure is simulated as the superposition of a uniform flow and a continuous vortex layer. By the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics, aerodynamic pressure acting on membrane surface can be determined. And based on the large amplitude theory of membrane and D'Alembert's principle, interaction governing equations of wind-structure are established. Then, under the circumstance of single-mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction governing equations into a system of second-order nonlinear differential equation with constant coefficients. Through judging the frequency characteristic of the system characteristic equation, the critical velocity of divergence instability is determined. Different parameter analysis shows that the orthotropy, geometrical nonlinearity and scantling of structure is significant for preventing destructive aerodynamic instability in membrane structures. Compared to the model without considering flow separation, it's basically consistent about the divergence instability regularities in the flow separation model.

Analysis of Blood Flow Interacted with Leaflets in MHV in View of Fluid-Structure Interaction

  • Park, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.613-622
    • /
    • 2001
  • Interaction of blood flow and leaflet behavior in a bileaflet mechanical heart valve was investigated using computational analysis. Blood flows of a Newtonian fluid and a non-Newtonian fluid with Carreau model were modeled as pulsatile, laminar, and incompressible. A finite volume computational fluid dynamics code and a finite element structure dynamics code were used concurrently to solve the flow and structure equations, respectively, where the two equations were strongly coupled. Physiologic ventricular and aortic pressure waveforms were used as flow boundary conditions. Flow fields, leaflet behaviors, and shear stresses with time were obtained for Newtonian and non-Newtonian fluid cases. At the fully opened phase three jets through the leaflets were found and large vortices were present in the sinus area. At the very final stage of the closing phase, the angular velocity of the leaflet was enormously large. Large shear stress was found on leaflet tips and in the orifice region between two leaflets at the final stage of closing phase. This method using fluid-structure interaction turned out to be a useful tool to analyze the different designs of existing and future bileaflet valves.

  • PDF

판막 거동을 고려한 이엽 기계식 인공심장 판막에서의 맥동유동에 관한 수치해석 (Numerical Study to the Pulsatile Blood Flow through a Bileaflet Mechanical Heart Valve including Moving Leaflets)

  • 최청렬;김창녕
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.504-512
    • /
    • 2002
  • Bileaflet mechanical valves have the complications such as hemolytic and thromboembolic events, leaflet damage, and leaflet break. These complications are related with the fluid velocity and shear stress characteristics of mechanical heart valves. This fact makes clear the importance of determining the fluid velocity and shear stress characteristics of mechanical heart valves, and requires a detailed understanding of these system properties and further substantial research. The first aim of current study is to introduce fluid-structure interaction method for calculation of unsteady and three-dimensional blood flow through bileaflet valve and leaflet behavior interacted with its flow, and to overcome the shortness of previous studies, where the leaflet motion has been ignored or simplified, by using FSI method. To accomplish this goal, a finite volume computational fluid dynamics code and a finite element structure dynamics code have been used concurrently to solve the flow and structure equations, respectively, to investigate the interaction between the blood flow and leaflet. Physiologic ventricular and aortic pressure waveforms were prescribed as flow boundary conditions. The interaction of aortic flow and valve motion were computed.

  • PDF