• 제목/요약/키워드: flow sheet

검색결과 526건 처리시간 0.021초

유동가시화를 통한 타원형날개주위 유동연구 (Study on the Flow Around an Elliptic Wing Using Flow Visualization Technique)

  • 현범수;김문찬
    • 대한조선학회논문집
    • /
    • 제30권1호
    • /
    • pp.94-103
    • /
    • 1993
  • NACA0020 단면을 갖는 타원형 날개끝에서 발생되어 전개되는 Tip Vortex를 연구하기 위하여 날개표면과 후류에서의 유동특성을 조사하였다. 날개표면 유동은 Tufts법과 캐비테이션 관찰로 분석되었으며 날개표면 압력계측으로 유동가시화 결과를 보완하였다. 연구결과 강력한 스팬방향 압력구배가 Tip Vortex 생성에 결정적 영향을 줌과 아울러 날개 양쪽면에서의 유동이 공히 보오텍스의 생성에 기여함을 알 수 있었다. 한편, 자세한 Tip Vortex의 구조를 보기위하여 캐비테이션 관찰, Laser Sheet 기법에 의한 보오텍스 단면가시화 및 유속계측이 실시되었는데 보오텍스의 형상과 강도는 날개의 받음각에 지배되어 나타났다. 날개끝 유동의 전반적인 특성은 비점성유동 가정하에서 사용되는 보오텍스 모델링을 보완할 목적으로 분석되었다.

  • PDF

횡방향 재하 말뚝 주변의 널말뚝에 관한 변수연구 (A Parametric Study of Sheet Pile Wall Near the Laterally Loaded Pile)

  • 윤희정
    • 한국지반환경공학회 논문집
    • /
    • 제13권8호
    • /
    • pp.35-43
    • /
    • 2012
  • 널말뚝을 해안지역이나 도심지역에 건설하는 경우 주변에 위치한 횡방향 재하 말뚝의 영향권 내에 존재하게 되는 경우가 발생하게 되지만, 기존 설계방법에서는 이러한 영향에 대하여 고려하고 있지 않다. 본 연구를 통해 말뚝에 횡방향 하중이 재하되는 경우 근접한 널말뚝에 미치는 영향을 정량적으로 예측할 수 있는 방법을 제안하고자 한다. 상용프로그램인 ABAQUS를 이용하여 3차원 유한요소 모델을 만들었으며 지반 구성모델로는 Drucker-Prager 모델, 널말뚝과 말뚝은 선형탄성으로 거동하도록 모사하였다. 널말뚝의 휨강성, 말뚝과 널말뚝 간의 거리, 굴착깊이, 그리고 지반의 탄성계수 등 총 4가지 변수들을 사용하여 횡방향 재하 말뚝이 주변 널말뚝에 미치는 영향을 분석해 보았다. 수치해석 결과를 이용하여 널말뚝에 발생하는 최대 횡방향 변위 및 휨모멘트를 측정할 수 있는 간단한 식을 제시하였다.

섬유강화 고분자 복합판의 압축성형에 있어서 금형-재료계면의 미끄름을 고려한 유동해석 (Simulation of Compression Molding Considering Slip at Interface for Polymeric Composite Sheet)

  • 장수학;김석호;백남주;김이곤
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.163-168
    • /
    • 1991
  • 본 연구에서는 여러가지의 성형조건에서 미끄름을 지배하는 상수를 측정하고, 유동 선단(flow front)에 미치는 이 상수의 영향을 검토한다. 또 측정된 상수를 가 지고 사각형 및 중공 원형 평판 압축성형에 대해서 2차원 유한 요소해석을 하고 실험 결과와 비교 검토한다.

DCS Post Flow가 $\textrm{WSi}_{x}$ 박막 특성에 미치는 영향 (Influence of DCS Post flow on the Properties of $\textrm{WSi}_{x}$ Thin films)

  • 전양희;강성준;강희순
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권4호
    • /
    • pp.173-178
    • /
    • 2003
  • In this paper, we studied the physical and electrical characteristics of $\textrm{WSi}_{x}$ thin film with respect to the adoption of the DCS (dichlorosiliane) post flow and the variation of deposition temperature. XRD measurements show that as deposited thin film has a hexagonal structure regardless of deposition Process. However, we find that the phase of thin film has changed to a tetragonal structure after the heat treatment at $680^{\circ}C$. Adoption of DCS post flow and increment of deposition temperature result in the increments of Si/W composition ratio. These conditions also result in the increment of sheet resistance by the amount 3.0~4.2$\Omega$/$\square$, but give the tendency in the decrement of stress by 0.27~0.3 E10dyne/$\textrm{cm}^2$. We also find that the contact resistance of word line and bit line interconnection was decreased by the amount 5.33~16.43$\mu$$\Omega$-$\textrm{cm}^2$, when applying DCS post flow and increasing deposition temperature.

BREAKUP LENGTH OF CONICAL EMULSION SHEET DISCHARGED BY PRESSURE-SWIRL ATOMIZER

  • Rhim, Jung-Hyun;No, Soo-Young
    • International Journal of Automotive Technology
    • /
    • 제2권3호
    • /
    • pp.103-107
    • /
    • 2001
  • Many researches on pressure-swirl injectors due to the variety of application have been conducted on the effects of nozzle design, operating conditions, properties of liquid and ambient conditions on the flow and spray characteristics. The breakup length of conical emulsified fuel sheet resulting from pressure-swirl atomizer using in the oil burner was investigated with the digital image processing method with neat light oil and emulsion with water content of lotto% and the surfactant content of 1-3%. The injection pressure ranged from 0.1 to 1.2 MPa was selected. The various regimes for the stage of spray development within the experimental conditions selected in this study is newly suggested in terms of Ohnesorge number and injection pressure. The breakup length for both criteria show the same tendency even though the random nature of perforation and disintegration process of liquid sheet. The stage of spray development is widely different with the physical properties of liquid atomized, mainly viscosity of liquid. The breakup length decreases smoothly with increase in the injection pressure for the lower viscous liquid.

  • PDF

내압을 받는 튜브 리듀싱에 관한 연구 (Study on the Tube Reducing Process Subject to Internal Pressure)

  • 이항수;양동열
    • 한국정밀공학회지
    • /
    • 제4권4호
    • /
    • pp.72-83
    • /
    • 1987
  • In axisymmetric tube reducing process for thin sheet metal tubes, the reduction ration of diameter is an important factor in the process design. For very thin sheet metal tubes, tube reducing cannot be successfully employed due to wrinkling of the edge portion of a tube as well as due to buckling of its rest portion. In the present study, thin sheet metal tubes are subjected to internal pressure during the tube reducing process in order to increase the forming limits. Analysis is made for the sound flow deformation in nonsteady tube reducing considering the normal anisotropy. Experiments are carried out for brass tubes. The present study is shown to give an effective guide line in designing the tube reducing process for very thin-walled sheet metal tubes. Hpwever, it is suggested that an analysis for instability should be made to design the process more effectively.

  • PDF

박판성형시 컬 예측모델 개발(I)-해석적 모델 (Development of Prediction Model for Sidewall Curl in Sheet Metal Forming(I)-Analytical Model)

  • 주병돈;박현규;김동우;문영훈
    • 소성∙가공
    • /
    • 제16권6호
    • /
    • pp.432-437
    • /
    • 2007
  • Sidewall curl is the curvature that results from non-uniform through-thickness strain present in the sheet stamping process which involves material flow over a die radius. In order to understand and control sidewall curl for tight fit-up tolerances, an analytical model that can provide a reliable measure for the amount of curl would be very helpful. In this study, a model is developed based on the moment-curvature relationship during bending-under-tension operations. The analytical model includes the variables of applied tensile force, the yield strength, the elastic modulus, the bending radius, and the sheet thickness, which are the primary factors affecting sidewall curl during sheet stamping operations. For the accuracy of analytical model, six possible deformation patterns are proposed on the basis of material properties and bending geometries.

Approximate Yield Criterion for Voided Anisotropic Ductile Materials

  • Kim, Youngsuk;Sungyeun Won;Kim, Dogsoo;Hyunsung Son
    • Journal of Mechanical Science and Technology
    • /
    • 제15권10호
    • /
    • pp.1349-1355
    • /
    • 2001
  • As most fractures of ductile materials in metal forming processes occurred due to the results of evolution of internal damage - void nucleation, growth and coalescence. In this paper, an approximate yield criterion for voided (porous) anisotropic ductile materials is developed. The proposed approximate yield function is based on Gurson's yield function in conjunction with the Hosford's non-quadratic anisotropic yield criterion in order to consider the characteristic of anisotropic properties of matrix material. The associated flow rules are presented and the laws governing void growth with strain are derided. Using the proposed model void growth of an anisotropic sheet under biaxial tensile loading and its effect on sheet metal formability are investigated. The yield surface of voided anisotropic sheet and void growth with strain are predicted and compared with the experimental results.

  • PDF

고분자 필름의 두께변화에 따른 Bi-Te계 열전모듈의 열분포 특성 (Thermal Distribution of Bi-Te Thermoelectric Module with the thickness of Polymer Sheet)

  • 변종보;김봉서;박수동;이희웅;김영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.85-86
    • /
    • 2005
  • In case of attaching thermoelectric module and heat source, the polymer sheet is attached on the $Al_2O_3$ plate, which is cooling side of thermoelectric module, in order to enhance mechanical safety of the system. It is impossible to calculate the exact distribution of temperature and flow pattern of inner gap of thermoelectric module. Therefore CFD analyses was executed to determine the thermo-fluid phenomena and distribution by Fluent. As the result of these analyses, heat transfer was dominated by conduction and the difference of temperature was linear distribution according to the thickness of polymer sheet.

  • PDF

박판 성형공정에서의 등가 경계조건 계산을 위한 드로우비드 성형의 탄소성 유한요소 해석 - PartI: 등가 경계조건 계산 (Elastic-plastic Finite Element Analysis of Drawbead Forming for Evaluation of Equivalent Boundary Conditions in Sheet Metal Forming - Part I : Evaluation)

  • 박종세;김승호;허훈
    • 소성∙가공
    • /
    • 제11권6호
    • /
    • pp.503-512
    • /
    • 2002
  • The drawbead is used to control material flow into the die during the binder wrap process and the stamping process in the sheet metal forming process. Since the dimension of drawbead is relatively small in comparison with the typical dimensions, it is difficult to include drawbeads in finite element analysis of the sheet metal forming process. It is because the mesh system has to be fine enough to describe the drawbead and the computation time is drastically increased. In this paper, simulation of drawbead forming has been carried out to obtain the equivalent boundary conditions in the binder wrap process and the stamping process. In order to investigate the effect of various die geometries, parameter studies are performed with the variation of parameters such as the blank length, the drawbead depth, the drawbead radius, the inclination of die and the friction coefficient.