• 제목/요약/키워드: flow sensing

검색결과 286건 처리시간 0.031초

제어관점에서의 부하감지형 유압시스템의 특성 (Properties of the Load-Sensing Hydraulic System from a Viewpoint of Control)

  • 김성동
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.738-750
    • /
    • 1994
  • The load-sensing hydraulic system which was developed to improve energy efficiency of conventional hydraulic systems has its own properties. The instability of system responses, linearity of a servo valve, robustness for variation of external load, and dynamic interference between hydraulic motors are such properties which have much to do with control properties of the system. The load-sensing hydraulic system has instability tendancy because the load-sensing mechanism makes a positive feedback loop between the motor part and the pump part. A flow property of the servo valve can be said to be linear because the flow through the valve has nothing to do with a load pressure and the flow is strictly proportional to a valve opening which is adjusted by a valve command signal. The resultant control property can be said to be robust because the steady-state control performance is independent to the load actuated on the motor shaft. In the case when one pump simultaneously drives more than two hydraulic motors, the pump outlet pressure is determined by a hydraulic motor of the largest load pressure among all of the hydraulic motors, and, thus, the other motors are dominated by the largest load pressure. That is, the other motors can be said to be interfered by the motor of the largest load pressure.

비례제어식 자동온도조절기의 온도감지방식별 난방제어 특성 비교 (A Comparison of Heating Control Characteristics by Temperature Sensing Methods for Thermostatic Valves with the Proportional Control Mode)

  • 김용기;이태원;강성주
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.161-166
    • /
    • 2007
  • Various thermostatic valves have been used widely in Korea for conservation of heating energy and enhancement of thermal comfort in residential buildings. But heating control performances of thermostatic valves extensively vary with the design and operational conditions of the heating system, climate condition and others. An experimental method was carried out in this study to analyze heating control characteristics by temperature sensing methods of thermostatic valves for various parameters, such as supply temperatures and flow rate of hot water, the position of room thermostats and outdoor air temperatures. As a result, the heat flow rate per day of S-Valve($34^{\circ}C$-Type) of water temperature sensing method was liked that of C-Valve of indoor air temperature sensing method with stage 3.3 of room thermostat in case supply temperature of hot water was $45^{\circ}C$, flow rate was 1.3 L/min and outdoor air temperature was $7.8^{\circ}C$.

  • PDF

화성쇄설류 분출 지역의 감시를 위한 광학영상과 화성쇄설류 범람 예측 모델링 분석 (Analysis of Optical Satellite Images and Pyroclastic Flow Inundation Model for Monitoring of Pyroclastic Flow Deposit Area)

  • 조민지;이사로;이창욱
    • 대한원격탐사학회지
    • /
    • 제30권2호
    • /
    • pp.173-183
    • /
    • 2014
  • 화산활동으로 인한 피해를 현장관측을 통해 조사할 경우, 비용과 인력, 안전 등의 문제로 인한 어려움이 많다. 인공위성 영상을 활용한 원격탐사는 이와 같은 문제를 극복하기에 매우 유용한 도구 중에 하나이다. 본 연구에서는 2009년 4월 17일과 2012년 7월 30일에 획득된 Landsat 7 ETM+ 위성 영상을 이용하여 인도네시아 수마트라 섬에 위치한 시나붕 화산의 2010년 화산활동을 관측하였다. 피복분류를 통해 2010년 분화 전 후의 화성쇄설류 범람 지역을 추출한 결과, 2010년 분화로 인해 화성쇄설류 범람 지역의 면적이 약 3배나 증가한 것을 확인하였다. 화성쇄설류 범람 지역 예측 모델링으로 얻어진 결과는 Landsat 영상에서 추출된 화성쇄설류 범람 지역과 비교되었다. 그 결과, 화성쇄설류 범람 지역 예측 모델링은 범람의 거리(길이)는 92%로 정확하게 계산되었지만 화산의 경사가 급격한 지역에서는 범람의 폭이 다소 부정확하게 계산되어 17%의 정확도를 나타내었다.

슬러그류 액상속도 측정용 전류형식 전자기유량계 개발 (Development of a Current-Type Electromagnetic Flowmeter to Obtain the Liquid Mean Velocity in Two-Phase Slug Flow)

  • 강덕홍;안예찬;김종록;오병도;김무환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1951-1956
    • /
    • 2004
  • The transient nature and complex flow geometries of two-phase gas-liquid flows cause fundamental difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing flowmeter was introduced to obtain measurements with high temporal resolution (Ahn et $al.^{(1)}$). In this study, current-sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. To do this, the velocity fields of axisymmetric gas-liquid slug flow in a vertical pipe were obtained using Volume-of-Fluid (VOF) method and the virtual potential distributions for the electrodes of finite size were also computed using the finite volume method for the simulated slug flow. The output signal prediction for slug flow was carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numerically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted output signal. Two calibration parameters are required for this procedure: a flow pattern coefficient and a localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration around the electrodes. These parameters were also calculated from the computed velocity and virtual potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal measured by a current-sensing flowmeter.

  • PDF

유속감지를 위한 반도체 유량센서 (Semiconductor Flow Sensor To Detect Air flow)

  • 이영주;전국진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 정기총회 및 추계학술대회 논문집 학회본부
    • /
    • pp.188-191
    • /
    • 1993
  • Silicon flow sensor which can detect the magnitude and direction of two dimensional air flow was designed and fabricated by CMOS process and bulk micromachining technique. The flow sensor consists of three-layered dielectric diaphragm a heater at the center of the diaphragm and four thermopiles surrounding the heater at each side of diaphragm as sensing elements. This diaphragm structure contributes to improve the sensitivity due to excellent thermal isolation property of dielectric materials and its tiny thickness. The flow sensor has good axial symmetry to sense 2-D air flow with the optimized sensing position in the given structure. Measured sensitivity of our sensor is $18.7mV/(m/s)^{1/2}$.

  • PDF

GIS를 이용한 토석류 발생유역 위험성분석에 관한 연구 (Study on Risk Analysis of Debris Flow Occurrence Basin Using GIS)

  • 전계원;오채연
    • 한국안전학회지
    • /
    • 제26권2호
    • /
    • pp.83-88
    • /
    • 2011
  • Annually, many parts of the Korea have been damaged from the localized heavy rain and/or typhoons which peak between June and September, which result in extensive financial and human loss. Especially, because the most area of Gangwon province is composed of the steep slope mountains, the damages by the debris flow or land-sliding are more frequent and the frequency has been increased. To analyze the characteristics and causes of these debris flow disasters, lots of study are recently being conducted through database of weather, hydrologic, soil etc using a GIS or remote sensing. In this study, we applied GIS method to analyze the risk of the debris flow area. With the statistical analysis and infinite slope stability model(SINMAP), the debris flow risk level of the mountain slope was generated. As a result, the GIS statistical analysis showed high correlation that former model of SINMAP in determining the debris flow risk area.

슬러그 2상유동에서 전류형식 전자기유량계 수치적 신호예측 및 보정 (Numerical Signal Prediction and Calibration Using the Theory of a Current-Type Electromagnetic Flowmeter for Two-Phase Slug Flow)

  • 안예찬;오병도;김종록;김무환;강덕홍
    • 대한기계학회논문집B
    • /
    • 제29권6호
    • /
    • pp.671-686
    • /
    • 2005
  • The transient nature and complex geometries of two-phase gas-liquid flows cause fundamental difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing flowmeter was introduced to obtain measurements with high temporal resolution (Ahn et al.). In this study, current-sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. The velocity fields of axisymmetric gas-liquid slug flow in a vertical pipe were obtained using Volume-of-Fluid (VOF) method, and the virtual potential distributions for the electrodes of finite size were also computed using the finite volume method for simulating slug flow. The output signal prediction for slug flow was carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numerically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted output signal. Two calibration parameters are proposed for this procedure: a flow pattern coefficient and a localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration around the electrodes. These parameters were also calculated from the computed velocity and virtual potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal measured by a current-sensing flowmeter.

구 주위 유동의 선형비례제어 (Linear Proportional Control of Flow Over a Sphere)

  • 전승;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2753-2756
    • /
    • 2007
  • In the present study, we reduce the drag and lift fluctuations of the sphere by providing a linear proportional control. For this purpose, we measure the radial velocity along the centerline in the wake and provide blowing and suction at a part of sphere surface based on the measured velocity. Zero-net mass flow rate is satisfied during the control. This control is applied to the flow over a sphere at Re=300 and 425. We vary the sensing location at $0.8d{\leq}X_s{\leq}1.3d$ and find that the most effective sensing region coincides with the location at which minimum correlation between the lift and sensing-velocity directions occurs. As a result, the lift and drag fluctuations are significantly reduced.

  • PDF

An analysis on the characteristics of landslides induced by heavy rainfall associated with Typhoons Herb (1996) and Troaji (2001) in Nantou on Taiwan

  • Cheng, Hsin-Hsing;Chang, Tzu-Yin;Liou, Yuei-An;Hsu, Mei-Ling
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1252-1254
    • /
    • 2003
  • Debris flows associated with landslides occur as one of the most devastating natural disasters that threat Taiwan. Typically, three essential factors are needed simultaneously to trigger debris flow, namely sufficient soils and rocks, favorable slope, and abundant water. Among the three essentials, the slope is natural and static without external forcing, while the landslide is generally induced by earthquake or rainfall events, and the water is produced by heavy rainfall events. In this study, we analyzed the landslides triggered by the typhoons Herb (1996) and typhoon Troaji (2001). It is concluded that the statistical data are useful to quantify the threshold of the potential landslide area. Then, the possibility to prevent the debris flow occurrence may be increased.

  • PDF

Extraction of Some Transportation Reference Planning Indices using High-Resolution Remotely Sensed Imagery

  • Lee, Ki-Won
    • 대한원격탐사학회지
    • /
    • 제18권5호
    • /
    • pp.263-271
    • /
    • 2002
  • Recently, spatial information technologies using remotely sensed imagery and functionality of GIS (Geographic Information Systems) have been widely utilized to various types of transportation-related applications. In this study, extraction programs of some practical indices, to be effectively used in transportation reference planning problem, were designed and implemented as prototyped extensions in GIS development environment: traffic flow estimation (TFL/TFB), urban rural index (URI), and accessibility index (AI). In TFL/TFB, user can obtain quantitative results on traffic flow estimation at link/block using high-resolution satellite imagery. Whereas, URI extension provides urban-rural characteristics related to road system, being considered one of important factors in transportation planning. Lastly, AI extension helps to obtain accessibility index between nodes of road segments and surrounding district areas touched or intersected with the road network system, and it also provides useful information for transportation planning problems. This approach is regarded as one of RS-T (Remote Sensing in Transportation), and it is expected to expand as new application of remotely sensed imagery.