• Title/Summary/Keyword: flow reactor

검색결과 1,593건 처리시간 0.026초

Numerical Study on the Natural Circulation Characteristics in an Integral Type Marine Reactor for Inclined Conditions

  • Kim, Tae-Wan;Park, Goon-Cherl;Kim, Jae-Hak
    • Nuclear Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.397-408
    • /
    • 2001
  • A marine reactor shows very different thermal-hydraulic characteristics compared to a land- based reactor. Especially, study on the variation of flow field due to ship motions such as inclination, heaving and rolling is essential since the flow variation has great influence on the reactor cooling capability. In this study, the natural circulation characteristics of integral type marine reactor with modular steam generators were analyzed using computational fluid dynamics code, CFX-4, for inclined conditions. The numerical analyses are performed using the results of natural circulation experiments for integral reactor which are already conducted at Seoul National University. From the results, it was found that the flow rate in the ascending steam generator cassettes increases due to buoyancy effect. Due to this flow variation, temperature difference occurs at the outlets of the each steam generator cassettes. which is mitigated through downcomer by thermal mixing. Also, around the upper pressure header the flow from descending hot leg goes up to the ascending steam generator cassettes due to large natural circulation driving force in ascending steam generator cassettes. From this result, the increase of How rate in the ascending steam generator cassettes could be understood qualitatively.

  • PDF

유동 덮개 형상이 축소 APR+ 내부 유동분포에 미치는 영향에 대한 수치해석 (Numerical Analysis for the Effect of Flow Skirt Geometry on the Flow Distribution in the Scaledown APR+)

  • 이공희;방영석;우승웅;김도형;강민구
    • 설비공학논문집
    • /
    • 제25권5호
    • /
    • pp.269-278
    • /
    • 2013
  • In this study, in order to examine the applicability of computational fluid dynamics with the porous model to the analysis of APR+ (Advanced Power Reactor Plus) internal flow, simulation was conducted with the commercial multi-purpose computational fluid dynamics software, ANSYS CFX V.14. In addition, among the various reactor internals, the effect of flow skirt geometry on reactor internal flow was investigated. It was concluded that the porous model for some reactor internal structures could adequately predict the hydraulic characteristics inside the reactor in a qualitative manner. If sufficient computation resource is available, the predicted core inlet flow distribution is expected to be more accurate, by considering the real geometry of the internal structures, especially located in the upstream of the core inlet. Finally, depending on the shape of the flow skirt, the flow distribution was somewhat different locally. The standard deviation of the mass flow rate (${\sigma}$) for the original shape of flow skirt was smaller, than that for the modified shape of flow skirt. This means that the original shape of the flow skirt may give a more uniform distribution of mass flow rate at the core inlet plane, which may be more desirable for the core cooling.

A FLOW AND PRESSURE DISTRIBUTION OF APR+ REACTOR UNDER THE 4-PUMP RUNNING CONDITIONS WITH A BALANCED FLOW RATE

  • Euh, D.J.;Kim, K.H.;Youn, Y.J.;Bae, J.H.;Chu, I.C.;Kim, J.T.;Kang, H.S.;Choi, H.S.;Lee, S.T.;Kwon, T.S.
    • Nuclear Engineering and Technology
    • /
    • 제44권7호
    • /
    • pp.735-744
    • /
    • 2012
  • In order to quantify the flow distribution characteristics of APR+ reactor, a test was performed on a test facility, ACOP ($\underline{A}$PR+ $\underline{C}$ore Flow & $\underline{P}$ressure Test Facility), having a length scale of 1/5 referring to the prototype plant. The major parameters are core inlet flow and outlet pressure distribution and sectional pressure drops along the major flow path inside reactor vessel. To preserve the flow characteristics of prototype plant, the test facility was designed based on a preservation of major flow path geometry. An Euler number is considered as primary dimensionless parameter, which is conserved with a 1/40.9 of Reynolds number scaling ratio. ACOP simplifies each fuel assembly into a hydraulic simulator having the same axial flow resistance and lateral cross flow characteristics. In order to supply boundary condition to estimate thermal margins of the reactor, the distribution of inlet core flow and core exit pressure were measured in each of 257 fuel assembly simulators. In total, 584 points of static pressure and differential pressures were measured with a limited number of differential pressure transmitters by developing a sequential operation system of valves. In the current study, reactor flow characteristics under the balanced four-cold leg flow conditions at each of the cold legs were quantified, which is a part of the test matrix composing the APR+ flow distribution test program. The final identification of the reactor flow distribution was obtained by ensemble averaging 15 independent test data. The details of the design of the test facility, experiment, and data analysis are included in the current paper.

회전식 화학증착 장치 내부의 유동해석을 통한 최적 유량 평가 (COMPUTATIONAL ASSESSEMENT OF OPTIMAL FLOW RATE FOR STABLE FLOW IN A VERTICAL ROTATING DISk CHEMICAL VAPOR DEPOSITION REACTOR)

  • 곽호상
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.86-93
    • /
    • 2012
  • A numerical investigation is conducted to search for the optimal flow rate for a rotating-disk chemical vapor decomposition reactor operating at a high temperature and a low pressure. The flow of a gas mixture supplied into the reactor is modeled by a laminar flow of an ideal gas obeying the kinetic theory. The axisymmetric two-dimensional flow in the reactor is simulated by employing a CFD package FLUENT. With operating pressure and temperature fixed, numerical computations are performed by varying rotation rate and flow rate. Examination of the structures of flow and thermal fields leads to a flow regime diagram illustrating that there are a stable plug-like flow regime and a few unfavorable flow regimes induced by mass unbalance or buoyancy. The criterion for sustaining a plug-like flow regime is discussed based on a theoretical scaling argument. Interpretation of the flow regime map suggests that a favorable flow is attainable with a minimum flow rate at the smallest rotation rate guaranteeing the dominance of rotation effects over buoyancy.

浸漬型 生物膜反應槽에 의한 負荷變動에서의 基質除去에 관한 연구 (A Study of Substrate Removal in Wastewater Flow Variations by Submerged Biofilm Reactor)

  • Nam, Chul-Hyun;Park, Jong-Woong
    • 한국환경보건학회지
    • /
    • 제13권2호
    • /
    • pp.83-90
    • /
    • 1987
  • The objective of this study is to review the basic theories related substrate removal in wastewater flow variations using submerged biofilm reactor. An aerated biofilm reactor is that in which influent organic substrates are aerobically oxidized by the microorganisms of biofilm grown on the surface of submerged media. No sludge is returned, and oxygen is supplied by diffusers. Three types of aerated biofilm reactor are one stage-central aeration, one stageup flow aeration and two stage-side aeration. The orders of substrate removal capacity in wastewater flow variations showed two stage-side aeration, one stage-upflow aeration and one stage-central aeration. The phenonmenon of nonclosing volid in upflow aeration type was superior to these in central-side aeration type. Attached biofilm masses in case of upflow, side and central aeration reactor were 1.0mg/cm$^2$, 4.1 mg/cm$^2$ and 0.93 mg/cm$^2$, respectively. Yield coefficient for biofilm was 0.31 to 0.48. Especially, removal efficiency can be increased remarkably according to the number of biofilm reactor and the packed condition of media.

  • PDF

테일러 반응기의 유동특성과 입자 체류시간에 관한 수치적 연구 (Numerical Studies of Flow Characteristics and Particle Residence Time in a Taylor Reactor)

  • 이현권;이상건;전동협
    • 공업화학
    • /
    • 제26권1호
    • /
    • pp.67-73
    • /
    • 2015
  • 전산유체해석 기법을 이용하여, 테일러 반응기 내 유동특성과 입자의 체류시간에 대하여 연구하였다. 테일러 반응기는 반응기의 작동조건에 따라 내부 유동특성이 달라지므로, 입구주입속도와 반응기 회전속도 변화에 따른 테일러 반응기 내부의 유동특성 변화를 살펴보았다. 또한 테일러 와류(TVF)영역에서 리튬이온전지의 양극물질인 NMC입자의 반응기 내 체류시간을 측정하였다. 입구에서의 복잡한 화학반응은 고려하지 않았고 테일러 유동의 영향만 고찰하였다. 해석결과 반응기의 회전속도가 높고 반응물의 주입속도가 낮을수록 입자의 체류시간이 길어지는 것을 확인하였다.

자연순환 루프에서 이상유동 특성에 관한 예비실험 연구 (Preliminary Experimental Study on the Two-phase Flow Characteristics in a Natural Circulation Loop)

  • 김재철;하광순;박래준;홍성완;김상백
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.308-311
    • /
    • 2008
  • As a severe accident mitigation strategy in a nuclear power plant, ERVC(External Reactor Vessel Cooling) has been proposed. Under ERVC conditions, where a molten corium is relocated in a reactor vessel lower head, a natural circulation two-phase flow is driven in the annular gap between the reactor vessel wall and its insulation. This flow should be sufficient to remove the decay heat of the molten corium and maintain the integrity of the reactor vessel. Preliminary experimental study was performed to estimate the natural circulation two-phase flow. The experimental facility which is one dimensional, the half height, and the 1/238 channel area of APR1400, was prepared and the experiments were carried out to estimate the natural circulation two-phase flow with varying the parameters of the coolant inlet area, the heat rate, and the coolant inlet subcooling. In results, the periodic circulation flow was observed and the characteristics were varied from the experimental parameters. The frequency of the natural circulation flow rate increased as the wall heat flux increased.

  • PDF

연소 배출가스의 유입방식에 따른 백필터를 활용한 흡착/촉매 통합공정 시스템 반응기 내 유동특성 (Flow Characteristics with Inflow-Duct Types in the Reactor of an Integrated Adsorption/Catalysis Process with Bag Filters)

  • 최청렬
    • 대한기계학회논문집B
    • /
    • 제31권5호
    • /
    • pp.425-434
    • /
    • 2007
  • An integrated adsorption/catalytic process has been considered to treat dioxin and $NO_x$ simultaneously. The process consists of a cyclone and a reactor with nine bag filters. In this study, numerical analysis has been performed to understand flow characteristics with inflow-duct types in the reactor. To consider flue gas and activated carbon particles simultaneously, Euler-Lagrangian model was employed. Fundamental flow patterns of flue gas and activated carbon particles, pressure distribution and distribution of activated carbon have been obtained from the numerical analysis. Also trace length and residence time of flue gas, residence time of activated carbon particles have been calculated directly. Flow patterns of flue gas and activated carbon particles in the reactor were very complicated and they moved along very various paths. Therefore, their residence time in the reactor was also various. The flow characteristics in the reactor were strongly influenced by inflow-duct types. The results obtained would be effectively used to estimate the removal efficiency in the reactor once the residence time is combined with the reaction equation.

연속흐름 반응기에서 광촉매 반응에 의한 VOC 물질제거 특성에 대한 수치적 연구 (A Numerical Analysis of the Abatement of VOC with Photocatalytic Reaction in a Flow Reactor)

  • 최우혁;김창녕;정석진
    • 설비공학논문집
    • /
    • 제13권7호
    • /
    • pp.637-646
    • /
    • 2001
  • VOC(Volatile Organic Compound) removal characteristics in continuous flow reactors have been numerically investigated. The photocatalytic reaction have been simulated with the binding constant and the reaction rate constant obtained from experimental data for the constant-volume batch reactor, and then VOC abatement in continuous flow reactors with the same conditions as those of batch reactor has been analyzed. The standard 4\kappa-\varepsilon$ model and mass conservation equation have been employed for numerical calculation, and heterogeneous reaction rate has been used in terms of the boundary condition of the conservation equation. in the case of the continuous flow reactor, reaction characteristics have been estimated with various inlet velocities and with different number of baffles. The result shows that the concentration distribution and flow patterns are strongly affected by the inlet velocity, and that with the increased inlet velocity, VOC removal rate is increased, while removal efficiency is decreased. This result may be useful in the design of reactors with improved VOC removal efficiency.

  • PDF

Electric power frequency and nuclear safety - Subsynchronous resonance case study

  • Volkanovski, Andrija;Prosek, Andrej
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1017-1023
    • /
    • 2019
  • The increase of the alternate current frequency results in increased rotational speed of the electrical motors and connected pumps. The consequence for the reactor coolant pumps is increased flow in primary coolant system. Increase of the current frequency can be initiated by the subsynchronous resonance phenomenon (SSR). This paper analyses the implications of the SSR and consequential increase of the frequency on the nuclear power plant safety. The Simulink $MATLAB^{(R)}$ model of the steam turbine and governor system and RELAP5 computer code of the pressurized water reactor are used in the analysis. The SSR results in fast increase of reactor coolant pumps speed and flow in the primary coolant system. The turbine trip value is reached in short time following SSR. The increase of flow of reactor coolant pumps results in increase of heat removal from reactor core. This results in positive reactivity insertion with reactor power increase of 0.5% before reactor trip is initiated by the turbine trip. The main parameters of the plant did not exceed the values of reactor trip set points. The pressure drop over reactor core is small discarding the possibility of core barrel lift.