• Title/Summary/Keyword: flow mode

Search Result 1,376, Processing Time 0.03 seconds

Analysis of Globular Transfer Considering Momentum Induced by Flow Within Molten Drop in GMAW (용적 내부의 유동에 의한 모멘텀을 고려한 GMA 용접의 입상용적 이행에 대한 해석)

  • Arif, Nabeel;Lee, Seung-H.;Kang, Moon-J.;Yoo, Choong-D.
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.61-65
    • /
    • 2008
  • The static force balance model (SFBM) has been used to analyze drop transfer in gas metal arc welding. Although the SFBM is capable of predicting the detaching drop size in the globular mode with reasonable accuracy, discrepancy between the calculated and experimental results increases with current. In order to reduce discrepancy, the SFBM is modified by considering the momentum of the molten metal flow, which is generated by the pinch pressure. The momentum increases with smaller drop size and becomes compatible to the electromagnetic force. The modified force balance model (MFBM) predicts the experimental results more accurately, and extends its application to the projected mode.

Performance Characteristics of a Polymer Electrolyte Fuel Cell with the Anodic Supply Mode (고분자 전해질 연료전지의 수소극 공급모드에 따른 성능특성)

  • Lee, Yong-Taek;Park, Cha-Sik;Heo, Jae-Hyeok;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.588-595
    • /
    • 2007
  • The water transport inside a polymer electrolyte fuel cell (PEFC) varied according to the anodic supply mode. The performance characteristics of a PEFC which can be affected by the water transport were observed with the anodic supply mode. In the flow-through and recirculation mode the performance showed no reduction with time because the flow in the anode was not stagnated. In the dead-end mode, without any discharged gas, the water remains inside of the anode, which caused the reduction of the performance with the lapse of time. However, even in the dead-end mode, little reduction of the performance with time was shown when only the anode was humidified externally. It means that the back-diffusion was the major factor to the accumulation of water in the anode rather than external humidification.

A Study on Evaluation Method for Piping Shell Mode Vibration (배관 Shell Mode 진동 평가방법에 대한 연구)

  • Chun, Chang-Bin;Park, Soo-Il;Chun, Hyong-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1285-1289
    • /
    • 2006
  • In a large diameter piping system, high frequency energy can produce excessive noise, high vibration, and failures of thermo-well, instrumentation, and attached small-bore piping. High frequency energy is generated by flow induced vibration like vortex shedding in orifices and valves. Once this energy is generated, amplification may occur from acoustical and/or structural resonances, resulting in high amplitude vibration and noise. At low frequencies, pipe vibration occurs laterally along the pipe's length, but at higher frequencies, the pipe shell wall vibrates radially across its cross-section. The simple beam analogy which is based on the beam mode vibration can not be applied to evaluate shell mode vibration. ASME OM3 recommends that the stress be measured directly by strain gauge and be evaluated according to the fatigue curves of the piping material. This Paper discusses the excitation and amplification mechanism relevant to high frequency energy generation in piping system, the monitoring method of the shell mode vibration in ASME OM3, the evaluation method generally used in the industry. Finally this paper presents the stress evaluation of the cavitating venturi down stream piping, where high frequency shell mode vibrations were observed during the operation.

  • PDF

In-cylinder Spray Flow Characteristics in Direct-injection Gasoline Engine (직접 분사식 가솔린 엔진의 실린더 내 분무 유동 특성에 관한 연구)

  • 김진수;전문수;윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.51-59
    • /
    • 2000
  • In-cylinder spray flow motion plays an important in the adjustment of mixture preparation with a fundamental spray characteristics and in-cylinder flow field well in direct-injection gasoline engine. In this study, the fundamental spray characteristics such as mean drop size, velocity distribution, spray angle were measured and in-cylinder spray flow motion was visualized in order to optimize intake port, piston top land and combustion chamber shapes in the development stage of mass-produced G야 engine. For these experiments, the PDPA measurements and Mie scattering technique were used for detailed spray characteristics and in-cylinder spray motions were obtained by use of ICCD camera through the single-cylinder optical engine. From the experimental results, the test injector shows a good low-end linearity between the dynamic flow and fuel injection pulse width and the fuel spray of 20mm or less in SMD with good spray symmetry. In addition, the in-cylinder tumble flow has more effect on the homogeneous mixture formation than that of in-cylinder swirl flow at early injection mode and the in-cylinder swirl flow plays a better role of stratified mixture preparation than tumble flow at late injection mode.

  • PDF

The Effect of the Intake Flow on the Spray Structure of a High Pressure 11-Hole Fuel Injector in a DISI Engine (직접분사식 가솔린 기관에서 흡입유동이 고압 11공 연료분사기의 분무형상에 미치는 영향)

  • Kim, Seong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.722-727
    • /
    • 2009
  • The effect of the intake flow on the spray structure of a high pressure 11-hole fuel injector were examined in a single cylinder optical direct injection spark ignition (DISI) engine. The effects of injection timing and in-cylinder charge motion were investigated using the 2-dimensional Mie scattering technique. It was confirmed that in the homogeneous charge mode, the in-cylinder swirl charge motion played a major role in the fuel spray distribution during the induction stroke rather than the tumble flow. But, in the stratified charge mode, the effect of the in-cylinder charge was not so large that the injected spray pattern was nearly maintained and the increase of in-cylinder pressure by the upward moving piston reduced the fuel spray penetration.

Effects of Injection Timing and Intake Flow on In-Cylinder Fuel Behavior in a GDI Engine (직접분사식 가솔린 엔진에서 분사시기와 흡입유동이 실린더 내 연료의 거동에 미치는 영향)

  • 이정훈;강정중;김덕줄
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.7-13
    • /
    • 2003
  • The purpose of this study is to investigate the effect of the in-cylinder flows and different injection timings on fuel behavior in the cylinder of a GDI engine. Three different flows types induced by using masked port, unmasked port, and port deactivation were tumble, swirl&tumble, and high swirl respectively. LIEF technique was applied to investigate the mixture formation and fuel distribution at ignition time in the transparent engine with optical access through the piston top and upper part of cylinder liner. Injection timings of 180,90, and 60 degrees before TDC were examined. It was found that tumble flow was more effective on the homogeneous mixture formation than other flow and swirl flow transported more fuel vapor to the exhaust side at early injection mode, and swirl and swirl & tumble flow made fuel vapor concentrate around the cylinder center at late injection mode.

Theoretical Flow Instability of the Karman Boundary Layer

  • Hwang, Young-Kyu;Lee, Yun-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.358-368
    • /
    • 2000
  • The hydrodynamic stability of the Karman boundary-layer flow due to a rotating disk has been numerically investigated for moving disturbance waves. The disturbed flow over a rotating disk can lead to transition at much lower Re than that of the well-known Type I instability mode. This early transition is due to the excitation of the Type II instability mode of moving disturbances. Presented are the neutral stability results concerning the two instability modes by solving new linear stability equations reformulated not only by considering whole convective terms but by correcting some errors in the previous stability equations. The reformulated stability equations are slightly different with the previous ones. However, the present neutral stability results are considerably different with the previously known ones. It is found that the flow is always stable for a disturbance whose dimensionless wave number k is greater than 0.75.

  • PDF

Numerical analysis on the inner flow characteristic for small smoke collector (소형 흡연집진기 내부 유동특성에 관한 수치해석)

  • Jang, Sung Cheol;Woong, Kim Jae;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.67-75
    • /
    • 2013
  • This study is flow analysis on the smoke collector in smoking room. The smoke collector for improving impure air at smoking area is analyzed and the inner flow filed in smoke collector is confirmed on the study result. The velocity with pressure distribution according to suction flow rate at filter entrance is also compared. Pressure characteristic and pressure resistance coefficient are analyzed according to flow analysis result for each other filter. The pressure drop of about 15 Pa occurs at the normal driving mode to strainer inlet from HEPA filter outlet. On the other hand, the pressure drop about 44% increases at turbo mode.

A Numerical Study on the Fluid Flow Past a Cylinder with a Periodic Array of Circular Fins (원형 핀이 부착된 실린더 주위의 유체 유동에 관한 수치적 연구)

  • Lee, Dong-Hyuk;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1344-1351
    • /
    • 2005
  • Three-dimensional, time-dependent solutions of fluid flow past a circular cylinder with a periodic array of circular fins are obtained using an accurate and efficient spectral multidomain methodology. A Fourier expansion with a corresponding uniform grid is used along the circumferential direction. A spectral multidomain method with Chebyshev collocation is used along the r-z plane to handle the periodic array of circular fins attached to the surface of the cylinder. Unlike the flow past a circular cylinder, Second instabilities like mode A and mode B are not found in the Reynolds number range $100\~500$. It is found that three-dimensional instability of vortical structures is suppressed due to the presence of fin. The present numerical solutions report the detailed information of flow quantities near wake of finned cylinder.

Electronic-hydraulic Hitch Control System for Agricultural Tractor -Draft Control- (트랙터의 전자유압식(電子油壓式) 히치 제어(制御) 시스템에 관한 연구(硏究)(II) -견인력제어(牽引力制御)-)

  • Yoo, S.N.;Ryu, K.H.;Yun, Y.D.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.4
    • /
    • pp.229-241
    • /
    • 1989
  • The purposes of this study were to develop an electronic-hydraulic draft control system for tractor implements, to investigate the control performance of the system and the possibility of adaptation to the conventional tractor. Experiments were carried out to investigate the responses of the system to the step and sinusoidal inputs in draft control. The effects of control mode, hydraulic flow rate, reference deadband, and proportional constant on control performance of the system were investigated. Moreover, the effects of filtering signals from draft sensor were also investigated. The following conclusions were derived from the study; 1. In draft control, there were hunting problems in controlling the implement without filtering the draft signals. Filtering was performed by a control program of electronic controller and the control performance and stability of the system were improved significantly. 2. For the draft control system operated on on-off control mode, draft was controlled within ${\pm}27-{\pm}55kg_f$ to the reference draft when the hydraulic flow rates were 5-15 l/min. For the draft control system operated on PWM control, draft was controlled within ${\pm}27kg_f$ to the reference draft regardless of hydraulic flow rates. 3. In the frequency responses of the draft control system, control performance on PWM control mode was not better than on on-off control mode because of characteristics of hydraulic valve and drafe sensor. As the hydraulic flow rates increased for the system operated on on-off control mode, the corner frequency of amplitude attenuation increased, but the corner frequency of phase-angle change remained nearly the same. But, the system was unstable beyond the frequency of 3.1 rad/s. 4. The electronic-hydraulic hitch control system developed in this study showed superior control performance, stability and convenience compared to conventional mechanical-hydraulic hitch control system. It is considered to be a superior replacement for the conventional mechanical-hydraulic hitch control system.

  • PDF