• Title/Summary/Keyword: flow loop system

Search Result 333, Processing Time 0.027 seconds

The flow characteristics of a Main Cooling Water System for Nuclear Fuel Test Loop Installed in HANARO (하나로 핵연료 시험루프의 주냉각수 계통 유동해석)

  • Park, Young-Chul;Lee, Young-Sub;Chi, Dai-Yong;Ahn, Seong-Ho;Kim, Yong-Ki
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.444-447
    • /
    • 2008
  • A nuclear fuel test loop (after below, FTL) is installed in IR1 of an irradiation hole in HANARO for testing neutron irradiation characteristics and thermo hydraulic characteristics of a fuel loaded in a light water power reactor (PWR) or a heavy water power reactor (CANDU). There is an in-pile section (IPS) and an out-pile section (OPS) in this test loop. When HANARO is normally operated, the fuel loaded in the IPS has a nuclear reaction heat generated by a neutron irradiation. To remove the generated heat and to maintain an operation condition of the test fuel, a main cooling water system (MCWS) is installed in the OPS of the FTL. The pump can not continuously suck a fluid and not pressurize the fluid during a cold function test. To verify the flow characteristics of the MCWS, a flow net work analysis has been conducted. When the higher elevation pipelines wholly filled with coolant, it was confirmed through the analysis results that the pump pressurized the coolant normally. And the analysis results described the system characteristics with operation temperature and pressure variation satisfactorily.

  • PDF

Comparisons of performance and operation characteristics for closed- and open-loop passive containment cooling system design

  • Bang, Jungjin;Jerng, Dong-Wook;Kim, Hangon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2499-2508
    • /
    • 2021
  • Passive containment cooling systems (PCCSs) have been actively studied to improve the inherent safety of nuclear power plants. Hered, we present two concepts, open-loop PCCS (OL-PCCS) and closed-loop PCCS (CL-PCCS), applicable to the PWR with a concrete-type containment. We analyzed the heat-removal performance and flow instability of these PCCS concepts using the GOTHIC code. In both cases, PCCS performance improved when a passive containment cooling heat exchanger (PCCX) was installed in the lower part of the containment building. The OL-PCCS was found to be superior in terms of heat-removal performance. However, in terms of flow instability, the OL-PCCS was more vulnerable than the CL-PCCS. In particular, the possibility of flow instability was higher when the PCCX was installed in the upper part of the containment. Therefore, the installation location of the OL-PCCS should be restricted to minimize flow instability. Conversely, a CL-PCCS can be installed without any positional restriction by adjusting the initial system pressure within the loop, which eliminates flow instability. These results could be used as base data for the thermo-hydraulic evaluation of PCCS in PWR with a large dry concrete-type containment.

Section Voltage Calculation while a Loop Operation by Tie-Switch Close in a Distribution Management System (배전운영 시스템에서 상시개방 연계 스위치 투입에 의한 루프 운전 중 구간전압 계산 방법)

  • Seo, Jeong-Soo;Lim, Il-Hyung;Park, Jong-Ho;Shin, Yonh-Hak;Choi, Myeon-Song
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.397-403
    • /
    • 2016
  • Generally, an electrical distribution configuration is a radial system with one-way current in a distribution management system (DMS). All feeders in a DMS have tie-switches to make radial system. Sometimes, DMS should change a tie-switch for operation. In that case, the tie-switch has to be closed first; then a switch is opened as another tie-switch in order to prevent blackout for customers. At the moment when the tie-switch is closed, distribution system is operated in a loop state, not radial. Before the loop operation, DMS operator has to check any expected events for stable distribution system operation; and the most important event is a mis-operation of a protection relay. In addition, DMS operator should check voltage profile violation but a calculation method of section voltages had not been used. Thus, this paper proposes a calculation method of section voltages at a loop operation in a DMS. The proposed calculation algorithm is verified by Matlap Simulink.

Thermal-Mixing Analyses for Safety Injection at Partial Loop Stagnation of a Nuclear Power Plant

  • Hwang, Kyung-Mo;Kim, Kyung-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1380-1387
    • /
    • 2003
  • When a cold HPSI (High pressure Safety Injection) fluid associated with an overcooling transient, such as SGTR (Steam Generator Tube Rupture), MSLB (Main Steam Line Break) etc., enters the cold legs of a stagnated primary coolant loop, thermal stratification phenomena will arise due to incomplete mixing. If the stratified flow enters the downcomer of the reactor pressure vessel, severe thermal stresses are created in a radiation embrittled vessel wall by local overcooling. As general thermal-hydraulic system analysis codes cannot properly predict the thermal stratification phenomena, RG 1.154 requires that a detailed thermal-mixing analysis of PTS (pressurized Thermal Shock) evaluation be performed. Also. previous PTS studies have assumed that the thermal stratification phenomena generated in the stagnated loop side of a partially stagnated primary coolant loop are neutralized in the vessel downcomer by the strong flow from the unstagnated loop. On the basis of these reasons, this paper focuses on the development of a 3-dimensional thermal-mixing analysis model using PHOENICS code which can be applied to both partial and total loop stagnated cases. In addition, this paper verifies the fact that, for partial loop stagnated cases, the cold plume generated in the vessel downcomer due to the thermal stratification phenomena of the stagnated loop is almost neutralized by the strong flow of the unstagnated loop but is not fully eliminated.

A Numerical Analysis on the Characteristics of Flow in the 20 MeV DTL Cooling System (20 MeV DTL 냉각계통의 유동 특성에 관한 수치해석)

  • Kim, Kyung-Ryul;Park, Jun;Kwon, Sei-Sin;Kim, Hyung-Gyun;Kim, Hee-Sub;Hwang, Woon-Ha;Yoon, Jong-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2907-2912
    • /
    • 2007
  • The cooling water system for the PEFP 20 MeV proton accelerator was established and tested to obtain the precise resonance frequency of DTL through the temperature control of cooling water. The water temperature in the main flow loop was manipulated by adjusting the proportion of hot water returning from the DTL structures through the heat exchanger loop. Due to low duty factor operation and insufficient cooling loop installation of the DTL tanks, the manual mode operation was applied to maintain the DTL temperatures close to their resonance temperatures. The optimized process conditions with flow balancing and pressure drop in the DTL cooling systems are reported.

  • PDF

System Dynamics Interpretation on Bus Scheduling Model (시스템 다이나믹스 관점에서의 버스 운영계획모형 해석)

  • Kim, Kyeong-Sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This paper aims mainly to reinterpretate Optimal Bus Scheduling Model by applying System Dynamics Perspective. Traditionally, the study regarding Optimal Bus Scheduling Model stems on the linear relationshp. However, this paper attempted to convert linear relationship based Optimal Bus Scheduling Model to causal loop perspective based Model. In result, the paper present Casual Loop Diagram for Optimal Bus Scheduling Model. Furthermore, the paper also ran a simulation based on Stock & Flow Diagram for Optimal Bus Scheduling Model. The outcome was not much different from the linear relationship based Model due to the similarity of the equation applied on two models.

  • PDF

A Study on the Operating Characteristics and System Modelling of Closed Loop Type Thermosyphon (루프형태의 밀폐형 Thermosyphon의 작동특성과 시스템 모델링에 관한 연구)

  • Kang, M.C.;Kang, Y.H.;Lee, D.G.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.2
    • /
    • pp.39-47
    • /
    • 2002
  • The thermosyphon SDHWS and the loop type thermosyphon systems are widely used for domestic hot water system. The loop type thermosyphon is a circulation device for transferring the heat produced at the evaporator to the condenser area in the loop. In this study, the operating characteristics of various working fluids being used have been identified. The working fluids employed in the study were ethanol. water, and a binary mixture of ethanol and water. The volume of working fluid used in this study were 30%, 40%, 50%, 60% and 70% of evaporator volume. It is observed that, in the thermosyphon with low volume of working fluid, such as 30% or 40%, the fluid was dried out. The flow pattern and mechanism of the heat transfer were identified through this study. Flow patterns of the binary mixture working fluid were also investigated, and the patterns were recorded in the camera. The system parameters were calculated using the thermal performance data. Modelling of the system was carried out using PSTAR method and TRNSYS program.

A Strategy for Balanced Power Regulation of Energy Storage Systems in a Distribution System during Closed-Loop Operation

  • Han, Yoon-Tak;Oh, Joon-Seok;Cha, Jae-Hun;An, Jae-Yun;Hyun, Seung-Yoon;Lee, Jong-Kwan;Seo, In-Yong;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2208-2218
    • /
    • 2017
  • To resolve overload in a distribution system, a distribution system operator (DSO) often performs a load transfer using normally open tie points and switches in the distribution line. During this process, the distribution system is momentarily operated in closed-loop operation. A closed-loop current in the distribution system can cause a power failure due to excess breaking current in the circuit breakers and reclosers. Therefore, it is necessary to calculate the closed-loop current exactly. However, if there are a large number of distributed generation (DG) systems in the distribution system, such as energy storage systems (ESS), they might obstruct the closed-loop operation based on bidirectional power flow. For quick and precise operation of a closed-loop system, the ESS has to regulate the power generation while satisfying closed-loop operation in the worst cases. We propose a strategy for balanced power regulation of an ESS. Simulations were carried out using PSCAD/EMTDC, and the results were compared with calculation results.

Development of Flow Loop System to Evaluate the Performance of ESP in Unconventional Oil and Gas Wells (비전통 유·가스정에서 ESP 성능 평가를 위한 Flow Loop 시스템 개발)

  • Sung-Jea Lee;Jun-Ho Choi;Jeong-Hwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.7-15
    • /
    • 2023
  • The electric submersible pump (ESP) has been operating in production wells around the world because of its high applicability and operational efficiency among artificial lift techniques. When operating an ESP in a reservoir, variables such as temperature, pressure, gas/oil ratio, and flow rate are factors that affect ESP performance. In particular, free gas in the production fluid is a major factor that reduces the life and operational efficiency of ESP. This study presents the flow loop system which can implement the performance and damage tests of ESP considering field operating conditions to quantitatively analyze the variables that affect ESP performance. The developed apparatus in an integrated system that can diagnose the failure and causes of ESP, and detect leak of tubing by linking ESP and tubing as one system. In this study, the flow conditions for stable operation of ESP were identified through single phase and two phase flow experiments related to evaluation for the performance of ESP. The results provide the basic data to develop the failure prediction and diagnosis program of ESP, and are expected to be used for real-time monitoring for optimal operating conditions and failure diagnosis for ESP operation.

Numerical Evaluation of Heat Transfer un Ground Heat Exchanger Considering Flow through U-loop (파이프 순환수의 수치해석 모사를 통한 수직 밀폐형 지중열교환기 단면의 열전달 효율 평가)

  • Gil, Hu-Jeong;Lee, Chul-Ho;Lee, Kang-Ja;Choi, Hang-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.583-587
    • /
    • 2009
  • This paper presents a series of numerical simulations on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) equipped in a geothermal heat pump system (GHP). A 3-D finite volume analysis (Fluent) was used to simulate the operating process of the closed-loop vertical ground heat exchanger by considering the effect of the thickness of HDPE pipe and grout thermal properties, distance between the inflow and outflow pipes, and the effectiveness of the latticed HDPE pipe system. It was observed that the thermal interference between the two strands of U-loop is of importance in determining the efficiency of the ground heat exchanger, and thus it is highly recommendable to modify the cross section configuration of the conventional U-loop system by including a thermally insulating latice between the two strands.

  • PDF