• Title/Summary/Keyword: flow field

Search Result 5,920, Processing Time 0.033 seconds

Development of Flow Control Valve Using MR Fluid (MR유체를 이용한 유량제어 밸브)

  • Lee, Hyung-Don;Bae, Hyung-Sub;Lee, Yuk-Hyung;Park, Myeong-Kwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.888-891
    • /
    • 2011
  • This paper presents development of flow control valve using MR fluid. Generally, since the apparent viscosity of MR fluids is adjusted by applying magnetic fields, the MR valves can control high level fluid power without any mechanical moving parts. In this paper, flow control valve using MR fluid on the behavior of the magnetic field influence on the numerical analysis of more accurate electromagnetic parameters were obtained, even if when magnetic field apply inside of surrounding MR fluid from electromagnet, more realistic designing way analysis of characteristic of whole magnetic field distribution is suggested by surrounding magnetic material. Also, comparison of flow rate inlet and outlet, behavior of MR fluid in experiments proposed. A new type of flow control valve using MR fluid is proposed by analysis of behavior of MR fluid in experiments.

Numerical analysis of the magnetic fluid velocity and pressure distribution according to the various magnetic field (여러가지 자기장 배치 기법에 따른 자성유체 속도 및 압력 분포에 관한 수치해석적 연구)

  • Song, Joon-Ho;Lee, Yuk-Hyung;Bae, Hyung-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.31-37
    • /
    • 2008
  • In this paper, we analyzed the dynamic behavior of magnetic fluid in a circular pipe with multiple permanent magnets. Magnetic fluid react on magnetic field against the normal fluid. In other words, magnetic fluid flow has the electromagnetism and fluid mechanics. So magnetic fluids has studied about the fluids properties and experiment. In this paper we studied the magnetic fluids velocity and pressure distribution for the novel type actuator. Because the velocity and pressure distribution is the important element of the magnetic fluids flow. First, we analyzed the Maxwell equation for the multiple permanent magnet and then concluded the governing equations for the magnetic fluid flow using the equation of Navier-Stokes. And, we simulated the dynamic behavior of magnetic fluid flow using the FEM(Finite Element Method). And we illustrated the relation between magnetic field and dynamic behavior of magnetic fluid flow.

  • PDF

A Study on Flow Rate Characteristic and Dynamic Performance on Diaphragm Solenoid Valve (다이어프램형 밸브의 유량특성과 동적성능에 관한 연구)

  • Jeong, C.S.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.3
    • /
    • pp.27-33
    • /
    • 2013
  • Solenoid valve has used in various industrial field extensively. A solenoid valve has different size, shape and method of operation accordantly to industrial field. Many researchers study on kinds of solenoid valve such as flow rate, dynamic, magnetic field, valve shape and operating method. But the flow rate characteristic and dynamic response time performance on the diaphragm valve are not studied. This paper describes the flow rate characteristic and dynamic response time performance on the diaphragm valve. At first, the diaphragm valve is simulated in AMESim simulation tool. AMESim model found that an effect of valve performance depends on parameter. The parameter is the diaphragm orifice area. And the performance test bench confirms the effect in this parameter. Finally, it finds out the flow rate characteristic and dynamic response time performance on the diaphragm valve.

Spray Characteristics of High Pressure Fan Spray Injector with Various Crossflow Speed (횡방향 유속 변화에 따른 고압 가솔린 팬형 인젝터의 분무특성)

  • Choi, Jae-Joon;Moon, Seok-Su;Bae, Choong-Sik
    • Journal of ILASS-Korea
    • /
    • v.10 no.3
    • /
    • pp.38-44
    • /
    • 2005
  • The direct injection into the cylinders has been regarded as a way of the reduction in fuel consumption and pollutant emissions. The spray produced from the injector of DIS(Direct Injection Spark Ignition) engine is of paramount importance in DISI engines. Fan-spray injector as well as swirl-spray injector was developed and utilized to the DISI engines. The interaction between air flow and fuel spray was investigated in a steady flow system embodied in a wind tunnel to simulate the variety of flow inside the cylinder of the DISI engineer. The direct Mie scattered images presented the macroscopic view of the liquid spray fields interacted with crossflow. Particle sizes of fuel droplets were measured with phase Doppler anemometer(PDA) system. A faster cross-flow field made SMD larger and $D_{10}$ smaller. The experiments show the interaction of air flow field and the fuel spray field of fan-spray. The results can be utilized to construct the data-base for the spray and fuel-air mixing mechanism as a function of the flow characteristics.

  • PDF

A Study on the Flue Gas Mixing for the Performance Improvement of De-NOx plant (배연탈질설비의 성능향상을 휘한 가스혼합에 관한 연구)

  • 류병남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.462-472
    • /
    • 1999
  • De-NOx facility using Selective Catalytic Reduction method is the most widely applied one that removes NOx from flue gas emitted from combustion facility such as boiler for power generation engine incinerator etc. Reductant $NH_3\;or\;NH_4OH$ is sprayed into flue gas to convert NOx into $H_2O$ and $N_2.$ Good mixing between flue gas and $NH_3$ is the most important factor to increase reduction in catalytic layer and to reduce unreacted NH3 slip. Therefore the development of mixer device for mixing effect is one of the important part for SCR facility. Objectives of this study are to investigate the relation between flow and concentration field by observation at the wake of delta-wing type mixer. At the first stage qualitative measurement of flow field is conducted by flow visualization using laser light sheet in lab. scale wind tunnel. Also we have conducted the quantitative analysis by comparing flow field measurement using LDV with numerical simulation. On the basis of qualitative and quantitative analysis we investigate the dis-tribution of flow and concentration in flow model facility. The results of an experimental and compu-tational examination of the vortex structures shed from delta wing type vortex generator having $40^{\circ}$ angle of attack are presented, The effects of vortex structure on the gas mixing is discussed, too.

  • PDF

Improvement of Separation of Polystyrene Particles with PAN Membranes in Hollow Fiber Flow Field-Flow Fractionation

  • Shin, Se-Jong;Chung, Hyun-Joo;Min, Byoung-Ryul;Park, Jin-Won;An, Ik-Sung;Lee, Kang-Taek
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1333-1338
    • /
    • 2003
  • Hollow Fiber flow field-flow fractionation (HF-FlFFF) has been tested in polyacrylonitrile (PAN) membrane channel in order to compare it with polysulfone (PSf) membrane channel. It has been experimentally shown that the separation time of 0.05-0.304 ${mu}m$ polystyrene latex (PSL) standards in PAN membrane channel is shorter than that in PSf channel by approximately 65%. The optimized separation condition in PAN membrane is ${\dot V}_{out}/{\dot V}_{rad}=1.4/0.12\;mL/min$, which is equal to the condition in PSf membrane channel. In addition both the resolution ($R_s$) and plate height (H) in PAN membrane channel are better than that in PSf membrane channel. The membrane radius was obtained by back calculation with retention time. It shows that the PSf membrane is expanded by swelling and pressure, but the PAN membrane doesn't expand by swelling and pressure.

A Study on the Flow Characteristics according to the Shapes of Rod on Impinging Jet by PIV Measurement (충돌 Jet에서 Rod 형상에 따른 유동특성의 PIV 계측에 의한 연구)

  • 나우정;정진도;송민근;이상범;손승우;주은선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.152-161
    • /
    • 2004
  • The thermal load is a very important problem to be solved in many industrial systems including the electronic equipment. Impinging Jets have been known to provide a large heat transfer rates on surface for many years. The turbulence enhancement of fluid flow is requested for the efficiency elevation of heat transfer. A study on flow fields by rods attached to the wall surface as a promoter of turbulence enhancement has been carried out. The exact analysis on chracteristics of impinging jet field is requested to obtain the optimum design of the impinging jet system. By visualizing the flow field and processing the high digital image by computer PIV can afford exact data on the velocity vector kinetic energy and turbulence intensity in the complex turbulence field. In this study. three kinds of rod shape such as square. triangle. and semicircle are selected as the turbulence promoter. Nozzle diameters are 10mm. 17mm. and 23mm. And the analysis of the flow characteristics due to the above rods is carried out at Re No. 2.000, 3.000. and 4,000 by PIV measurement. It is clarified that the rod setup is very useful to obtain the turbulence enhancement and the turbulence intensity according to the shapes of rod appears large in order of the shapes of rod such as square 〉 triangle 〉semicircle.

Experiment on Small A.C. MHD Power Generator (소용량 교류 MHD발전기에 대한 실험적 연구)

  • Choon Saing Jhoun
    • 전기의세계
    • /
    • v.25 no.5
    • /
    • pp.79-87
    • /
    • 1976
  • This paper is to investigate the A.C generation of MHD engine, converting directly the kinetic energy of conductive gas in high temperature to electric power by the effect of magnetic field. It is known that there are at least two kinds of method in A.C MHD power generation; one, by sending stationary plasma flow in an alternating or rotating magnetic field and the other, by transmission of pulse type plasma flow in uniform and constant magnetic field, former method is adopted here. In order to raise the total efficiency of close cycle in combination with nuclear power and MHD genertaion, an argon plasma jet is utilized as heat source, which is not mixed with the seed material, and the design data are obtained for A.C MHD generation in small capacity, but induced voltage and power output have the maximum values, 15 voltages and 7.5W respectively due to plasma flow with low conductivity and weak magnetic field.

  • PDF

Design and Performance Test of Plate Type ER-Valve (평판형 ER-Valve의 제작 및 성능실험)

  • 장성철;염만오
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.29-35
    • /
    • 2003
  • In this research 4 plate type ER-Valves which have same surface but different width and length are designed and an experimental apparatus is constructed. With this experimental apparatus, flow rate and pressure drop of ER fluid flowing in ER-valves are measured with varying electric field strength of ER-valve, and relation between valve types and pressure drop is also experimented. ER fluid is made silicon oil mixed with 40wt% starch having hydrous particles. If we allow the same electric field in the ER-Valve, we came to how that the pressure drop is effected by the electrode length and electrode width. When the strength of the electric field increased, the pressure drop happened big and the flow rate decreased.

Navier-Stokes Analysis of Pitching Delta Wings in a Wind Tunnel

  • Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.28-38
    • /
    • 2001
  • A numerical method for the assessment and correction of tunnel wall interference effects on forced-oscillation testing is presented. The method is based on the wall pressure signature method using computed wall pressure distributions. The wall pressure field is computed using unsteady three-dimensional full Navier-Stokes solver for a 70-degree pitching delta wing in a wind tunnel. Approximately-factorized alternate direction implicit (AF-ADI) scheme is advanced in time by solving block tri-diagonal matrices. The algebraic Baldwin-Lomax turbulence, model is included to simulate the turbulent flow effect. Also, dual time sub-iteration with, local, time stepping is implemented to improve the convergence. The computed wall pressure field is then imposed as boundary conditions for Euler re-simulation to obtain the interference flow field. The static computation shows good agreement with experiments. The dynamic computation demonstrates reasonable physical phenomena with a good convergence history. The effects of the tunnel wall in upwash and blockage are analyzed using the computed interference flow field for several reduced frequencies and amplitudes. The corrected results by pressure signature method agree well with the results of free air conditions.

  • PDF