• Title/Summary/Keyword: flow domain

Search Result 973, Processing Time 0.024 seconds

Reflections of shocks in nonequilibrium flow of air

  • Park, Tae-Hoon
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.3
    • /
    • pp.767-781
    • /
    • 1995
  • In this paper we present computation of a reflected shock in the hypersonic flow of air with chemical reactions. We consider two dimensional steady inviscid hypersonic flow of air around bodies including chemical reaction effects. At a high Mach number, a strong shock is formed in front of the body when a wedge is placed against the flow. In front of the shock, temperature and pressure increase greatly and the flow is in nonequilibrium state. If the shock hits a wall, then a reflected shock is formed in the nonequilibrium flow region. Behind this reflected shock, the temperature and pressure are very high. We carry out the computation of the reflected shock and the flow behind it. The jump conditions at the reflected shock are presented. A technique combining smooth transforms of domain and implicit difference methods is used to overcome numerical difficulties associated with the lack of resolution behind the shock and near the body.

  • PDF

A computational approach to the simulation of controlled flows by synthetic jets actuators

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.77-94
    • /
    • 2015
  • The paper focuses on the integration of a non-linear one-dimensional model of Synthetic Jet (SJ) actuator in a well-assessed numerical simulation method for turbulent compressible flows. The computational approach is intended to the implementation of a numerical tool suited for flow control simulations with affordable CPU resources. A strong compromise is sought between the use of boundary conditions or zero-dimensional models and the full simulation of the actuator cavity, in view of long-term simulation with multiple synthetic jet actuators. The model is integrated in a multi-domain numerical procedure where the controlled flow field is simulated by a standard CFD method for compressible RANS equations, while flow inside the actuator is reduced to a one-dimensional duct flow with a moving piston. The non-linear matching between the two systems, which ensures conservation of the mass, momentum and energy is explained. The numerical method is successfully tested against three typical test cases: the jet in quiescent air, the SJ in cross flow and the flow control on the NACA0015 airfoil.

A Study of Accuracy Improvement of an Analysis of Flow around Arbitrary Bodies by Using an Eulerian-Lagrangian Method (Eulerian-Lagrangian 방법을 사용한 임의 물체주위 유동해석의 정도 향상을 위한 연구)

  • Park I. R.;Chun H. H.
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.19-26
    • /
    • 2001
  • An Eulerian-Lagrangian method, so called immersed boundary method, is used for analysing viscous flow around arbitrary bodies, where governing equations are discretized on a regular grid by using a finite volume method. To improve the accuracy of flow near body boundaries, a second-order accurate interpolation scheme is used and a level-set based grid deformation method is presented to construct the adaptive grids around body boundaries. The present scheme is used to simulate steady flow around a semicircular cylinder mounted on the bottom of flow domain and calculated results are validated by results of a body fitted grid method. Finally, present method is applied to a complex flow around multi body and the usefulness is checked by investigating calculated results.

  • PDF

The effects of axial spacing on the unsteady secondary and performance in one-stage axial turbine (1단 터빈에서 축간격 변화가 비정상 이차유동 및 성능에 미치는 영향)

  • Park Junyoung;Baek JeHyun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.537-540
    • /
    • 2002
  • Flow through turbomachinery has a very complex structure and is intrinsically unsteady. Especially, recent design trend to turbomachinery with short axial spacing makes the flow extremely complex due to the interaction between stator and rotor. Therefore, it is very necessary to clearly understand the complex flow structure to obtain the high efficiency turbomachinery. So, in this paper, the effects of axial spacing on the unsteady secondary flow performance in the one stage turbine are investigated by three-dimensional unsteady flow analysis. The three-dimensional solver is parallelized using domain decomposition and Message Passing Interface(MPI) standard to overcome the limitation of memory and the CPU time in three-dimensional unsteady calculation. A sliding mesh interface approach has been implemented to exchange flow information between blade rows.

  • PDF

Study on Flow Resistance by the Design of Cooling Fan (냉각 팬의 설계에 의한 유동저항에 관한 연구)

  • Cho, Jae-Ung
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.41-47
    • /
    • 2011
  • In this study, the structural analysis of cooling fan is combined with 3-D flow analysis by using CFD on fluid domain. The smoothly cooling flow with optimum design of cooling parts is essential at automotive combustion engine. The fan shape is modeled with three kinds of shape by varying the radius of the fan blade. By the results of analysis, the flow at Model I is more uniform than Model II or III. And the displacement at Model I is less than Model II or III. As the flow resistance of cooling fan at Model I decreases more than Model II or III, the efficiency becomes better.

침투해석 프로그램의 활용과 해석 사례

  • Kim, Sang-Gyu;Hong, Byeong-Man;Seo, Hong-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.235-254
    • /
    • 1991
  • In the analysis of seepage behavior through the porous media, unsaturated domain should be included for obtaining more accurate results. The seepage programs considering its domain have been developed and practically used widely. The programs are reviewed and two case studies are presented in this paper. The case studies are performed using PC-SEEP and obtained good results for the cases of saturated-unsaturated transient flow.

  • PDF

ATTRACTORS AND QUASI-ATTRACTORS OF A FLOW

  • Zuo, Chunyan;Wang, Xiaoxia
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.411-417
    • /
    • 2007
  • In this paper, the connection among the attractor, the attractor neighborhood and the domain of influence are investigated. A necessary and sufficient condition of the existence of the quasi-attractor is established. Some results of Conley in [2] are generalized.

A Time-Domain Approach for the Second-Order Diffraction Problem Around Circular Cylinders in Random Waves

  • YONGHWAN KIM
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.12-18
    • /
    • 2001
  • This study concentrates on the second-order diffraction problem around circular cylinders in multi-frequency waves. The method of solution is a time-domain Rankine panel method which adopts a higher-order approximation for the velocity potential and wave elevation. In the present study, the multiple second-order quadratic transfer functions are extracted from the second-order time signal generated in random waves, and the comparison with other bench-mark test results shows a good agreement. This approach is directly applicable to prediction of nonlinear forces on offshore structures in random ocean.

  • PDF

Development of internal inflow/outflow steady mean flow boundary condition using Perfectly Matched Layer for the prediction of turbulence-cascade interaction noise (난류-캐스케이드 상호작용 소음 예측을 위한 Perfectly Matched Layer 을 이용한 내부 입/출구 정상유동 경계조건의 개발)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.521-526
    • /
    • 2012
  • It is essential for the accurate time-domain prediction of broadband noise due to turbulence-cascade interaction to develop inflow/outflow boundary conditions to satisfy the following three requirements: to maintain the back ground mean flow, to nonreflect the outgoing disturbances and to generate the specified input gust. The preceding study(1) showed that Perfectly Matched Layer (PML) boundary condition was successfully applied to absorb the outgoing disturbances and to generate the specified gust in the time-domain computations of broadband noise due to interaction of incident gust with a cascade of flat-plates. In present study, PML boundary condition is extended in order to predict steady mean flow that is needed for the computation of noise due to interaction of incident gust with a cascade of airfoils. PML boundary condition is originally designed to absorb flow disturbances superimposed on the steady meanflow in the buffer zone. However, the steady meanflow must be computed before PML boundary condition is applied on the flow computation. In the present paper, PML equations are extended by introducing source term to maintain desired mean flow conditions. The extended boundary condition is applied to the benchmark problem where the meanflow around a cascade of airfoils is predicted. These illustrative computations reveal that the extended PML equations can effectively provide and maintain the target meanflow.

  • PDF

Development of Internal Inflow/outflow Steady Mean Flow Boundary Condition Using Perfectly Matched Layer for the Prediction of Turbulence-cascade Interaction Noise (난류-캐스케이드 상호작용 소음 예측을 위한 Perfectly Matched Layer을 이용한 내부 입/출구 정상유동 경계조건의 개발)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.685-691
    • /
    • 2012
  • It is essential for the accurate time-domain prediction of broadband noise due to turbulence-cascade interaction to develop inflow/outflow boundary conditions to satisfy the following three requirements: to maintain the back ground mean flow, to nonreflect the outgoing disturbances and to generate the specified input gust. The preceding study showed that perfectly matched layer(PML) boundary condition was successfully applied to absorb the outgoing disturbances and to generate the specified gust in the time-domain computations of broadband noise due to interaction of incident gust with a cascade of flat-plates. In present study, PML boundary condition is extended in order to predict steady mean flow that is needed for the computation of noise due to interaction of incident gust with a cascade of airfoils. PML boundary condition is originally designed to absorb flow disturbances superimposed on the steady meanflow in the buffer zone. However, the steady meanflow must be computed before PML boundary condition is applied on the flow computation. In the present paper, PML equations are extended by introducing source term to maintain desired mean flow conditions. The extended boundary condition is applied to the benchmark problem where the meanflow around a cascade of airfoils is predicted. These illustrative computations reveal that the extended PML equations can effectively provide and maintain the target meanflow.