• Title/Summary/Keyword: flow discharge

Search Result 2,060, Processing Time 0.028 seconds

Numerical simulation of the change in groundwater level due to construction of the Giheung Tunnel (기흥터널 건설에 따른 지하수 변화 수치모델링)

  • Lee, Jeong-Hwan;Hamm, Se-Yeong;Cheong, Jae-Yeol;Jeong, Jae-Hyeong;Kim, Ki-Seok;Kim, Nam-Hoon;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.449-459
    • /
    • 2010
  • We performed numerical simulations of the excavation of an underground structure (the Giheung Tunnel) in order to evaluate the rate of groundwater flow into the structure and to estimate the groundwater level around the structure. The tunnel was constructed in Precambrian bedrock in Gyeonggi Province, South Korea. Geological and electrical resistivity data, as well as hydraulic test data, were used for the numerical modeling. The modeling took into account the strike-slip faults that cross the southern part of Giheung Tunnel, as these structures influence the discharge of groundwater into the tunnel. The transient modeling estimated a groundwater flow rate into the tunnel of $306\;m^3$/day, with a grout efficiency of 40%, yielding good agreement between the calculated change in groundwater level (6.20 m) and that observed (6.30 m) due to tunnel excavation.

Study on Performance of Vertical-axis Tidal Turbines Applied to the Discharged Channel of Power Plant (조류발전용 수직축 터빈의 방수로 설치에 따른 성능에 관한 연구)

  • Lee, Jeong-Ki;Hyun, Beom-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.274-281
    • /
    • 2015
  • Thermal and nuclear power plants on shore commonly use the sea water for cooling facility. Discharged cooling water has the high kinematic energy potential due to amount of water flux. Numerical analysis was made to find the suitable combinations between the arrangement of tidal turbines and the overall dimensions of the discharged channel. Several parameters such as the turbine diameter to inlet size, and the axial distance to turbine size were investigated. Power coefficients for various test conditions were also compared to see the effect of inlet configurations such as single inlet and dual inlet. For the single inlet, the mean power coefficient appeared to be gradually decreased with increasing distance, and the maximum power was obtained when the turbine diameter was same as the inlet diameter. For the dual inlet, the tendency was similar so that the better result when the turbine diameter was same as the inlet diameter. It is expected that the present methodology can be extensively utilized to harness the high kinetic energy flow of the discharge channel of power plant.

Resource Circulation Plan using Material Flow Analysis of Waste Metals of Cobalt and Palladium (코발트와 팔라듐 폐금속자원의 흐름분석을 통한 자원순환 활성화 방안)

  • Lee, Hi Sun;Lee, Jeongmin;Yi, Sora
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.14-21
    • /
    • 2018
  • The rapid increase in the consumption of products that contain rare metals has highlighted the importance of recycling and recovering resources from these products when they enter the waste stream. Among various metal resources that can be recovered, this study analyzes the waste streams of cobalt and palladium to determine how their waste resource circulation can be improved at each stage of the waste stream. The findings of this study point to improvements and strategies that can be made at individual stages. First, at the discharge/import stage, the implementation of tariff quotas for specific recycled metal resources is suggested to allow the systemic categorization of waste metals as resources. At the collection/discarding stage, a major problem is the instability in the supply of scrap metals, which may be better managed by changing the bidding process for the scrap metals. At the pretreatment stage, possible areas for improvement are uncovered concerning technical areas, such as technological development and improving the efficiency of material recycling, as well as policy-wise, for instance, expanding the regulation for manufacturers to produce products that are designed to facilitate resource recovery, increasing incentive for closed recycling, and refining the guidelines and standards for recycling. At the resource recovery stage, as the waste metal recycling industry consists of businesses that vary in size, policies to promote cooperation and coexistence between large and smaller enterprises will benefit the industry in the long-run. Lastly, at the product production/export stage, a tariff on exporting waste resources that contain cobalt and palladium will help control the amount of waste metals that are shipped abroad.

Analysis of Pollution Characteristics in the Mainstream and Its Tributaries of Gongneung Stream Using Water Quality Index and Pollution Load Data (통합수질지수 및 오염부하자료를 이용한 공릉천 유입지천과 본류의 오염특성 분석)

  • Yu, Jae-Hyun;Lee, Han-Saem;Lim, Byung-Ran;Kang, Joo-Hyoung;Ahn, Tae-Ung;Shin, Hyun-Sang
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.2
    • /
    • pp.125-136
    • /
    • 2020
  • In this study, we identified the major pollution-zones of the mainstream and its tributaries of Gongneung stream and investigated their pollution sources based on water quality, flowrate and pollution-load data of the stream having the characteristics of the urban-rural complex to examine the effect of the tributaries on the water quality changes in the mainstream. The water quality and flowrate data were collected for 10 months (2018 ~ 2019) at 3 points of mainstream and ten tributaries. Water quality index (WQI), load duration curve (LDC), discharge load density (DLD)and delivery ratios for each tributary were obtained so as to investigate the pollution characteristics and some of the information visualized on GIS. The main pollution-zone in the Gongneung stream was in the middle and lower streams, and the tributaries that may affect the pollution of the area were JS, JY, SL and SM. JS and SL had low WQI levels (34.7/37.5) and DLD (kg/d/㎢) of BOD and T-P were relatively high in JY (99.2/6.00) and SL (60.0/2.07). BOD and T-P delivery ratios in JS were high (0.94/0.83), suggesting that JS had significant influence on the water quality of the main pollution-zone in the Gongneung stream. Meanwhile, SM having a high T-P delivery ratio (0.97) was found to be more affected by the non-point source due to the higher LDC excess rate (%) in the low flow compared to high flow. This study provides basic data on the water quality and pollution characteristics of the Gongneung stream, and the analysis results are expected to be used as examples for identifying the main pollution-zone and tributaries of stream and their pollution sources.

Effect of RuO$_2$ Thin Film Microstructure on Characteristics of Thin Film Micro-supercapacitor ($RuO_2$박막의 미세 구조가 박막형 마이크로 슈퍼캐패시터의 특성에 미치는 영향)

  • Kim, Han-Ki;Yoon, Young-Soo;Lim, Jae-Hong;Cho, Won-Il;Seong, Tae-Yeon;Shin, Young-Hwa
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.671-678
    • /
    • 2001
  • All solid-state thin film micro supercapacitor, which consists of $RuO_2$/LiPON/$RuO_2$ multi layer structure, was fabricated on Pt/Ti/Si substrate using a $RuO_2$ electrode. Bottom $RuO_2$ electrode was grown by dc reactive sputtering system with increasing $O_2/[Ar+O_2]$ ratio at room temperature, and a LiPON electrolyte film was subsequently deposited on the bottom $RuO_2$ electrode at pure nitrogen ambient by rf reactive sputtering system. Room temperature charge-discharge measurements based on a symmetric $RuO_2$/LiPON/$RuO_2$ structure clearly demonstrates the cyclibility dependence on the microstructure of the $RuO_2$ electrode. Using both glancing angle x-ray diffraction (GXRD) and transmission electron microscopy (TEM) analysis, it was found that the microstructure of the $RuO_2$ electrode was dependent on the oxygen flow ratio. In addition, x- ray photoelectron spectroscopy(XPS) examination shows that the Ru-O binding energy is affected by increasing oxygen flow ratio. Furthermore, TEM and AES depth profile analysis after cycling demonstrates that the interface layer formed by interfacial reaction between LiPON and $RuO_2$ act as a main factor in the degradation of the cyclibility of the thin film micro-supercapacitor.

  • PDF

Energy Efficiency Evaluation of Publicly Owned Wastewater Utilities (공공하수처리장의 에너지 소비현황 및 효율성 평가)

  • Cho, Eulsaeng;Han, Dae Ho;Ha, Jongsik
    • Journal of Environmental Policy
    • /
    • v.11 no.4
    • /
    • pp.85-105
    • /
    • 2012
  • In this paper, the energy efficiency of wastewater utilities was evaluated to explore ways to save energy via operational measures. The correlation of each wastewater characteristic parameter to energy was assessed to find a set of parameters that explained most of the variations in energy use among utilities. The results show that increases in inflow, influent COD concentration, and ratio of advanced treatment generally increased the energy use. On the other hand, increases in load factor (influentaverage flow/design flow) reduced the energy use. In the regression analysis, the energy efficiency was highest in the A2O advanced process. On the other hand, the membrane process (among the advanced processes) and the contacted aeration process (among the secondary processes) require more efforts in saving energy. However, the data base system related to energy use must be supplemented in order for more accurate analysis of energy consumption in wastewater treatment facilities. In particular, i) electricity consumption of relay pumps and, ii) energy usage per unit process, iii) pump power usage to discharge treated wastewater in a long distance, if necessary, and iv) alternative energy production and utilization status must be recorded. By utilizing the results of the analysis conducted in this study, it is possible to quantify a level of energy savings needed and establish customized energy saving measures to achieve a certain target level for benchmarking a successful case of wastewater utilities.

  • PDF

Contribution of Non-Point Pollution to Water Quality and Runoff Characteristics from Agricultural Area of the Upstream Watersheds of Lake Chinyang

  • Lee, Chun-Sik;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.259-267
    • /
    • 2013
  • In this study, non-point source(NPS) contribution was investigated based on flow rates and water qualities of streams into the lake during rainfall events. Event mean concentration(EMC) and the pollution loads were calculated to establish a database for NPS control measurement in the survey area, and so on. The runoff characteristics of NPS were investigated and estimated on the basis of the ratio of an agricultural to forest area in the stream of sub-catch basin during rainfall events. Non-point source pollution loads were also calculated to establish a database for NPS control measure in the upstream lake Chinyang. At a rainfall event, BOD concentrations rise sharply at the early peak time of runoff, however, peaks of TSS concentration were observed at the similar time of peak flow. This was a phenomenon shown at the watersheds caused by forest and geological types. The discharged EMC range was 2.9-4.8 mg/L in terms of BOD. The discharged EMC range was 6.2-8.2 mg/L in terms of SS. The discharged EMCs of T-N and T-P were 1.4-2.5 mg/L and 0.059-0.233 mg/L, respectively. Total BOD loading rate through the 3 tributaries to the lake Chinyang was 1,136 kg/d during dry weather. The upper watershed area of the Nam-river dam in this study was divided into 14 catchment basins based on the Korean guideline for total maximum daily load(TMDL) of water quality pollutants. The higher the agricultural land-use ratio, the more NPS loading rate discharged, but the more occupied a forest area, the lower more NPS loading rate discharged. In an agricultural land-use area more than 20%, the increase of NPS loadings might be dramatically diffused by increasing the integrated complex-use like vinyl-house facilities and fertilizer use etc. according to the effective land-use utilization. The NPS loading rates were BOD 0.3 $kg/ha{\cdot}day$, SS 0.21 $kg/ha{\cdot}day$, TN 0.02 $kg/ha{\cdot}day$, TP 0.005 $kg/ha{\cdot}day$ under less than 10% agricultural land-use. In agricultural land-use of 20%-50%, these values were investigated in the range of 0.32 $kg/ha{\cdot}day$-0.73 $kg/ha{\cdot}day$ for BOD, 0.92 $kg/ha{\cdot}day$-3.32 $kg/ha{\cdot}day$ for SS, 0.70 $kg/ha{\cdot}day$-0.90 $kg/ha{\cdot}day$ TN, 0.03 $kg/ha{\cdot}day$-0.044 $kg/ha{\cdot}day$ for TP.

The Effect of Uncertainty in Roughness and Discharge on Flood Inundation Mapping (조도계수와 유량의 불확실성이 홍수범람도 구축에 미치는 영향)

  • Jung, Younghun;Yeo, Kyu Dong;Kim, Soo Young;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.937-945
    • /
    • 2013
  • The accuracy of flood inundation maps is determined by the uncertainty propagated from all variables involved in the overall process including input data, model parameters and modeling approaches. This study investigated the uncertainty arising from key variables (flow condition and Manning's n) among model variables in flood inundation mapping for the Missouri River near Boonville, Missouri, USA. Methodology of this study involves the generalized likelihood uncertainty estimation (GLUE) to quantify the uncertainty bounds of flood inundation area. Uncertainty bounds in the GLUE procedure are evaluated by selecting two likelihood functions, which is two statistic (inverse of sum of squared error (1/SAE) and inverse of sum of absolute error (1/SSE)) based on an observed water surface elevation and simulated water surface elevations. The results from GLUE show that likelihood measure based on 1/SSE is more sensitive on observation than likelihood measure based on 1/SAE, and that the uncertainty propagated from two variables produces an uncertainty bound of about 2% in the inundation area compared to observed inundation. Based on the results obtained form this study, it is expected that this study will be useful to identify the characteristic of flood.

An Experimental Study on the Improvement of Foam Fire-Extinguishing System's Mixing Ratios by Expanding the Cross Sectional Area of the Stock Solution Inhaling Piping (원액흡입배관 단면적 확장에 의한 포 소화설비 혼합비 개선에 관한 실험적 연구)

  • Yun, Ki-Jo;Jang, Kyung-Nam;Baek, Eun-Sun;Park, Bong-Rae;Park, Hee-Joog
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.30-37
    • /
    • 2013
  • The ultimate purpose of the present study is to secure a effective method for foam liquid discharge when the mixing ratio deviates from the permissible range due to a decrease in the bypass flow rate resulting from a decrease in the cross sectional area of the foam liquid piping ranging from the branching header of one foam proportioner to the branching headers of multiple branching foam fire-extinguishing systems in the region for fire extinguishing and then to the standpipe at the lower part of the storage tank when a fire occurred in a combustible tank. To this end, the cause of mixing ratio variations following changes in the flow rates of existing foam fire extinguishing systems was analyzed, methods for compensation for constant mixing ratios were investigated, and it was proved that metering orifice replacements that could expand the cross sectional area of the stock solution inhaling piping was the most effective way for the improvement of form fire extinguishing systems' mixing ratios through foam proportioner venturi, foam chamber orifice, and metering orifice replacement experiments.

Radionuclides Transport from the Hypothetical Disposal Facility in the KURT Field Condition on the Time Domain (KURT 부지 환경에 위치한 가상의 처분 시설에서 누출되는 방사성 핵종의 이동을 Time Domain에서 해석하는 방법에 관한 연구)

  • Hwang, Youngtaek;Ko, Nak-Youl;Choi, Jong Won;Jo, Seong-Seock
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.295-303
    • /
    • 2012
  • Based on the data observed and analyzed on a groundwater flow system in the KURT (KAERI Underground Research Tunnel) site, the transport of radionuclides, which were assumed to be released at the supposed position, was calculated on the time-domain. A groundwater pathway from the release position to the surface was identified by simulating the groundwater flow model with the hydrogeological characteristics measured from the field tests in the KURT site. The elapsed time when the radionuclides moved through the pathway is evaluated using TDRW (Time Domain Random Walk) method for simulating the transport on the time-domain. Some retention mechanisms, such as radioactive decay, equilibrium sorption, and matrix diffusion, as well as the advection-dispersion were selected as the factors to influence on the elapsed time. From the simulation results, the effects of the sorption and matrix diffusion, determined by the properties of the radionuclides and underground media, on the transport of the radionuclides were analyzed and a decay chain of the radionuclides was also examined. The radionuclide ratio of the mass discharge into the surface environment to the mass released from the supposed repository did not exceed $10^{-3}$, and it decreased when the matrix diffusion were considered. The method used in this study could be used in preparing the data on radionuclide transport for a safety assessment of a geological disposal facility because the method could evaluate the travel time of the radionuclides considering the transport retention mechanism.