• Title/Summary/Keyword: flow controller

Search Result 709, Processing Time 0.028 seconds

Thrust Analysis of Combustor Through Control of Scramjet Propulsion System (스크램제트 추진 시스템의 비행 제어를 통한 연소기의 추력 분석)

  • Ko, Hyosang;Yang, Jaehoon;Yoh, Jai ick;Choi, Hanlim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.29-41
    • /
    • 2021
  • The PID controller with fin angle and thrust as control input was designed based on the aerodynamic data of scramjet system. Flight simulation following a given trajectory which strike the target point after climb and cruise with constant dynamic pressure was conducted. After that, the required thrust for the climb and cruise was calculated and the required fuel flow rate for the hydrogen fuel dual mode scramjet combustor was analyzed. The combustor analysis of this study which conducted on integrated model of independently developed inlet, combustor, nozzles and external aerodynamic models, laying the foundation for the integrated design of the air breathing hypersonic system.

Monitoring and vibration control of a fluid catalytic cracking unit

  • Battista, Ronaldo C.;Varela, Wendell D.;Gonzaga, Igor Braz N.
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.577-588
    • /
    • 2022
  • Oil refineries' Fluid Catalytic Cracking Units (FCCU) when in full operation may exhibit strong fluid dynamics caused by turbulent flow in the piping system that may induce vibrations in other mechanical and structural components of the Unity. This paper reports on the experimental-theoretical-computational program performed to get the vibration properties and the dynamic response amplitudes to find out alternative solutions to attenuate the excessive vibrations that were causing fatigue fractures in components of the bottle like reactor-regenerator of an FCC unit in operation in an existing oil refinery in Brazil. Solutions to the vibration problem were sought with the aid of a 3D finite element model calibrated with the results obtained from experimental measurements. A short description of the found solutions is given and their effectiveness are shown by means of numerical results. The solutions were guided by the concepts of structural stiffening and dynamic control performed by a nonlinear pendulum controller whose mechanical design was based on parameters determined by means of a parametric study carried out with 2D and 3D mathematical models of the coupled pendulum-structure system. The effectiveness of the proposed solutions is evaluated in terms of the fatigue life of critical welded connections.

Hydroponic Cultivation Using an Ultraviolet LED (자외선 광원을 이용한 살균 모듈 개발)

  • Youm, Sungkwan;Jeong, Heewon;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.569-570
    • /
    • 2021
  • Hydroponic cultivation is of considerable interest to the production of high-quality green plants. However, establishing the planting operating systems in hydroponic cultivation may result in chronic problems, such as the reproduction of harmful bacteria throughout the circulating culture fluid. Extensive research has been conducted on using an ultraviolet sterilization system to prevent culture fluid contamination. In this study, the proposed module, using UV-C LEDs that emit wavelengths between 270 and 285 nm, was designed along with a sensor and controller. The module was set to emit 300, 500, and 700 mW, for different culture fluid flow rates, to investigate its capacity to eliminate Escherichia coli, Clavibacter michiganensis, Pseudomonas cichorii, and Fusarium oxysporum.

  • PDF

Reducing the Non Grinding Time in Grinding Operations(1st Report) -Reducing the Air Grinding time using Sound Sensor- (연삭가공에 있어 비가공 시간 단축에 관한 연구(I) -음향센서를 이용한 공연삭 시간의 단축-)

  • KIM, Sun Ho;AHN, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.85-91
    • /
    • 1997
  • Air grinding time in grinding process has a great effect on its efficiency due to low feedrate. This paper presents a reduction methos of air grinding time in cylindrical plunge grinding operation. Tje reduction of air grinding time is accomplished by finding the distance between contact point and rising point of ultra- sonic signal of the grinding wheel to workpiece. It uses a variation of sound signal generated by the flow of coolant when the grinding wheel approaches to workpiece. The ultrasonic sensor with 23 kHz center fre- quency and 8 kHz bandwidth is used to find the nearest approaching point(NAP). Monitoring and control system of the grinding conditions is implemented with CNC controller to control feedrate override and ultrasonic sensor to find NAP. The experimental result shows that the ultrasonic signal is a good measure- ment to find NAP. But it needs the considerations for the effect of the relationship between flowrate of coolant and diameter of workpiece.

  • PDF

A novel aerodynamic vibration and fuzzy numerical analysis

  • Timothy Chen;Yahui Meng;Ruei-Yuan Wang;ZY Chen
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.161-170
    • /
    • 2024
  • In recent years, there have been an increasing number of experimental studies showing the need to include robustness criteria in the design process to develop complex active control designs for practical implementation. The paper investigates the crosswind aerodynamic parameters after the blocking phase of a two-dimensional square cross-section structure by measuring the response in wind tunnel tests under light wind flow conditions. To improve the accuracy of the results, the interpolation of the experimental curves in the time domain and the analytical responses were numerically optimized to finalize the results. Due to this combined effect, the three aerodynamic parameters decrease with increasing wind speed and asymptotically affect the upper branch constants. This means that the aerodynamic parameters along the density distribution are minimal. Taylor series are utilized to describe the fuzzy nonlinear plant and derive the stability analysis using polynomial function for analyzing the aerodynamic parameters and numerical simulations. Due to it will yield intricate terms to ensure stability criterion, therefore we aim to avoid kinds issues by proposing a polynomial homogeneous framework and utilizing Euler's functions for homogeneous systems. Finally, we solve the problem of stabilization under the consideration by SOS (sum of squares) and assign its fuzzy controller based on the feasibility of demonstration of a nonlinear system as an example.

Development of Device Measuring Real-time Air Flow in Greenhouse (온실 공기유동 계측 시스템 개발)

  • Noh, Jae Seung;Kwon, Jinkyoung;Kim, Yu Yong
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.20-26
    • /
    • 2018
  • This study was conducted to develop a device for measuring the air flow by space variation through monitoring program, which acquires data by each point from each environmental sensor located in the greenhouse. The distribution of environmental factors(air temperature, humidity, wind speed, etc.) in the greenhouse is arranged at 12 points according to the spatial variation and a large number of measurement points (36 points in total) on the X, Y and Z axes were selected. Considering data loss and various greenhouse conditions, a bit rate was at 125kbit/s at low speed, so that the number of sensors can be expanded to 90 within greenhouse with dimensions of 100m by 100m. Those system programmed using MATLAB and LabVIEW was conducted to measure distributions of the air flow along the greenhouse in real time. It was also visualized interpolated the spatial distribution in the greenhouse. In order to verify the accuracy of CFD modeling and to improve the accuracy, it will compare the environmental variation such as air temperature, humidity, wind speed and $CO_2$ concentration in the greenhouse.

A Study of Measurement on Airtightness and Air-Flow Performance of Apartment Housing Adopting Window Frame-Type Natural Ventilation (자연환기장치가 적용된 공동주택의 기밀 및 공기유동 성능 실측 연구)

  • Chun, Chu-Young;Kim, Gil-Tae;Kim, Sun-Dong
    • Land and Housing Review
    • /
    • v.5 no.4
    • /
    • pp.325-332
    • /
    • 2014
  • The purpose of this study was to measure the airtightness and Air-Flow Performance for 7th house of small apartment houses adopted window frame-type natural ventilation. All window and living room door is provide with window frame-type natural ventilation, and there is provide with manual controller. As the object of measurement, the 6th type small apartment houses with area of $33m^2$ to $51m^2$ was selected. airtightness performance was measured at the front door using Blower door system. We measured ventilation rate per hour on 50Pa pressure different between inside and outside by the 1st to 6th cases. As a result, when the natural ventilation frame was closed, average amounts are shown as the ventilation rate per hour were 2.27ACH (CASE1). and the result is similar to general apartment house (1.65~4.28ACH). When the natural ventilation frame was open, average amounts are shown as the ventilation rate per hour were 5.87ACH (CASE6). In addition, that's a 3.6ACH increased more than CASE1.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

Development of the Automated Ultrasonic Testing System for Inspection of the flaw in the Socket Weldment (소켓 용접부 결함 검사용 초음파 자동 검사 장비 개발)

  • Lee, Jeong-Ki;Park, Moon-Ho;Park, Ki-Sung;Lee, Jae-Ho;Lim, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.275-281
    • /
    • 2004
  • Socket weldment used to change the flow direction of fluid nay have flaws such as lack of fusion and cracks. Liquid penetrant testing or Radiography testing have been applied as NDT methods for flaw detection of the socket weldment. But it is difficult to detect the flaw inside of the socket weldment with these methods. In order to inspect the flaws inside the socket weldment, a ultrasonic testing method is established and a ultrasonic transducer and automated ultrasonic testing system are developed for the inspection. The automated ultrasonic testing system is based on the portable personal computer and operated by the program based Windows 98 or 2000. The system has a pulser/receiver, 100MHz high speed A/D board, and basic functions of ultrasonic flaw detector using the program. For the automated testing, motion controller board of ISA interface type is developed to control the 4-axis scanner and a real time iC-scan image of the automated testing is displayed on the monitor. A flaws with the size of less than 1mm in depth are evaluated smaller than its actual site in the testing, but the flaws larger than 1mm appear larger than its actual size on the contrary. This tendency is shown to be increasing as the flaw size increases. h reliable and objective testing results are obtained with the developed system, so that it is expected that it can contribute to safety management and detection of repair position of pipe lines of nuclear power plants and chemical plants.

A LQR Controller Design for Performance Optimization of Medium Scale Commercial Aircraft Turbofan Engine (II) (중형항공기용 터보팬 엔진의 성능최적화를 위한 LQR 제어기 설계 (II))

  • 공창덕;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.99-106
    • /
    • 1998
  • The performance of the turbofan engine, a medium scale civil aircraft which has been developing in Rep. of Korea, was analyzed and the control scheme for optimization the performance was studied. The dynamic and real-time linear simulation was performed in the previous study The result was that the fuel scedule of the step increase overshoot the limit temperature(3105 $^{\cire}R$) of the high pressure turbine and got small surge margine of the high pressure compressor. Therefore a control scheme such as the LQR(Linear Quadratic Regulator) was applied to optimizing the performance in this studies. The linear model was expected for designing controller and the real time linear model was developed to be closed to nonlinear simulation results. The system matrices were derived from sampling operating points in the scheduled range and then the least square method was applied to the interpolation between these sampling points, where each element of matrices was a function of the rotor speed. The control variables were the fuel flow and the low pressure compressor bleed air. The controlled linear model eliminated the inlet temperature overshoot of the high pressure turbine and obtained maximum surge margins within 0.55. The SFC was stabilized in the range of 0.355 to 0.43.

  • PDF