• Title/Summary/Keyword: flow control.

Search Result 7,410, Processing Time 0.242 seconds

Numerical Study About Flow Control Using Blending Gurney Flap with Jet Flap (Gurney플랩과 제트 플랩을 혼용한 유동제어 기법에 관한 수치적 연구)

  • Choi, Sung-Yoon;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.565-574
    • /
    • 2007
  • The flow control effect of blending Gurney flap with jet flap for flow around an NACA 0012 airfoil was numerically investigated through parameter variation of each flow control mechanism on unstructured meshes. The aerodynamic force and moment variations due to flow control were examined, and the results were compared between the blending control and each individual flow control. The results showed that the blending control required less energy input to achieve the same level of lift increment than that of the jet flap, and at the same time alleviated drag increment caused by introducing the Gurney flap.

Three-dimensional Numerical Modelling of Seawater Circulation of Semi-enclosed Bay with the Flow-control Structures

  • JONG-KYU KIM;TAE-SOON KANG;HEON-TAE KIM
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.35-42
    • /
    • 2001
  • The characteristics of tidal circulation with the flow-control structures using the three-dimensional numerical model (POM, Princeton Ocean Model) of Chinhae Bay, Korea were investigated. To confirm th efficiencies of flow-control structures, the training wall and submerged training wall were constructed at the mouth and narrow channel in Chinhae Bay. On the basis of the present investigation, the tidal circulation induced by the construction of flow-control structures could enhance the water exchange improvement appropriately. And, th training wall at the central is more dominated than the other structures for the efficient of water exchange. The sites and types of structure and flow patterns seem to be very sensitive in tidal simulation and changes in flow fields.

  • PDF

A Study on the Design of Flow Control Valve Attached to Vane Pump for Power Steering (파워 스티어링용 베인 펌프 유량 제어부 설계에 관한 연구)

  • 이윤태
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.87-95
    • /
    • 2000
  • The numerical analysis and the experiments are carried out to develop the design program for the flow control valve attached to the vane pump for power steering. The factors affecting the flow rate characteristics are analyzed by the experiments and the numerical analysis. The results are summarized as follows; (1) the main factors affecting to the first and second control flow rate are the diameter of big and small rod of the spool. (2) the cut off is mainly affected by the main spring constant, the initial displacement of main spring and the small diameter of the spool. (3) the dropping slope characteristics are decided by the chamfer of spool and the dynamic characteristics of the spool.

  • PDF

PASSlVE SHOCK CONTROL IN TRANSONIC FLOW FIELD

  • Matsuo S;Tanaka M;Setoguchi T;Kashimura H;Yasunobu T;Kim H.D
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.80-86
    • /
    • 2005
  • In order to control the transonic flow field with a shock wave, a condensing flow was produced by an expansion of moist air on a circular bump model and shock waves were occurred in the supersonic parts of the fields. Furthermore, the additional passive technique of shock-boundary layer interaction using the porous wall with a cavity underneath was adopted in this flow field. The effects of these methods on the shock wave characteristics were investigated numerically. The result showed that the flow fields might be effectively controlled by the suitable combination between non-equilibrium condensation and the position of porous wall.

Passive Shock Control in Transonic Flow Field

  • Matsuo S.;Tanaka M.;Setoguchi T.;Kashimura H.;Yasunobu T.;Kim H. D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.187-188
    • /
    • 2003
  • In order to control the transonic flow field with shock wave, a condensing flow was produced by an expansion of moist air on a circular bump model and shock waves were occurred in the supersonic parts of the fields. Furthermore, the additional passive technique of shock - boundary layer interaction using the porous wall with a cavity underneath was adopted in this flow field. The effects of these methods on the shock wave characteristics were investigated numerically. The result showed that the flow fields might be effectively controlled by the suitable combination between non-equilibrium condensation and the position of porous wall.

  • PDF

Effect of Reynolds Number on the Flow Characteristics of a Control Valve (제어밸브 유량특성에 레이놀즈 수가 미치는 영향)

  • Jung, Taekyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.995-999
    • /
    • 2017
  • The factors affecting the flow coefficient of a control valve were identified and analyzed. The flow coefficient of a control valve are affected by not only Reynolds Number but also the figure and the roughness of the inlet/outlet pipes. Therefore, the flow coefficient is not a constant value. For the purpose of use in the system such as LRE, requiring the exact flow-coefficient of a control valve, the flow-coefficient should be measured under similar Reynolds Number using the inlet and outlet pipes which have the same figure and roughness with a real system.

  • PDF

Suboptimal Control for Drag Reduction in Turbulent Pipe Flow (환형관내 유동에서의 항력감소를 위한 준최적 제어)

  • Choi, Jung-Il;Xu, Chun-Xiao;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.377-382
    • /
    • 2001
  • A suboptimal control law in turbulent pipe flow is derived and tested. Two sensing variables ${\partial}p/{\partial}{\theta}\;|_w\;and\;{\partial}{\upsilon}_{\theta}/{\partial}r\;|_w$ are applied with two actuations ${\phi}_{\theta}$ and ${\phi}_r$. To test the suboptimal control law, direct numerical simulations of turbulent pipe flow at $Re_r=150$ are performed. When the control law is applied, a $13{\sim}23%$ drag reduction is achieved. The most effective drag reduction is made at the pair of ${\partial}{\upsilon}_{\theta}/{\partial}r\;|_w$ and ${\theta}_r$. An impenetrable virtual wall concept is useful for analyzing the near-wall suction and blowing. The virtual wall concept is useful for analyzing the near-wall behavior of the controlled flow. Comparison of the present suboptimal control with that of turbulent channel flow reveals that the curvature effect is insignificant.

  • PDF

Ground Speed Control of a Direct Injection Sprayer

  • Koo, T.M.;Sumner, H.R.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.500-510
    • /
    • 1996
  • A Direct injection -mixing total -flow -control sprayer was developed and evaluated . The system provided precise application rates and minimized operator exposure to chemicals as well as providing a possibility for recycling container so f unused chemicals that can causes environmental contamination. Chemicals were metered and injected proportionally to the diluent flow rate to provide constant concentrations. The main diluent flow was varied in response to changes in travel speed. Experimental variables of the sprayer were the control interval, the sensitivity of flow regulating valve, the tolerance of control object and the sensitivity of the injection pump system. The optimal performance of the flow control system was with an average response time of 8.5 sec at an absolute steady state of error of 0.067 L/min (0.8% of flow rate). The average response time of the injection rate was -0.53 sec and the coefficient of variation (CV) of concentration was 3.2%.

  • PDF

Thermal Performance Evaluation of Solar Hot Water System according to Flow Rate Control (유량제어방식에 따른 태양열 급탕시스템의 열성능 평가)

  • Baek, Nam-Choon;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.140-145
    • /
    • 2011
  • In this study, the performance and behavior of solar heating system according to the system control scheme, variable flow control (proportional control) and constant flow control (on-off control) was carried out by experiment. The on-off control is used generally for solar thermal system by now. But the proportional control is used for the solar district heating system which is supplied the higher temperature of water than that of desired. The proportional control logic that pump speed is varied in an attempt to maintain a specified outlet temperature of solar heating system was developed and tested for the use widely for the small and medium solar thermal system. The results are as following. First, the proportional controller which is made here could be adopted the characteristics for setting temperature control. Second, the proportional control is better than the on-off control in the side of the performance of thermal stratification in storage tank. Third, the operating energy(electricity consumption by pump) of solar thermal system can be saved more than 60% using the proportional control comparing to the on-off control.

Mass-flow Stabilization Control of a Strip Head Part in Hot Rolling Process (열간 압연공정의 선단부 통판성 안정화 제어)

  • Hwang, I-Cheol;Park, Cheol-Jae;Baek, Woon-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.330-336
    • /
    • 2009
  • This paper studies on the new control algorithm for the mass-flow stabilization in strip head part of a hot strip mill. A new strip tension model in the strip head part is derived using the current deviation of two neighboring stands. The current deviation means a difference between a measured current and a lock-on current, where the lock-on current is set up when a strip tension or a looper angle reaches each target value or time is about 0.4sec, respectively. On the basis of the tension calculation model, a mill velocity of a backward stand is controlled to stabilize a strip mass-flow by PI control algorithm. Therefore, the mass-flow control for strip head part is executed from a metal-in time into a foreward stand till the looper works normally. It is known by the results of a computer simulation and an experiment that the proposed control algorithm is very effective in stabilizing the mass flow of the strip head part.