• Title/Summary/Keyword: flow cell

Search Result 3,119, Processing Time 0.03 seconds

An Experimental Study of Coolant Operating Conditions in a Polymer Electrolyte Membrane Fuel Cell (고분자연료전지의 냉각수 운전 조건에 관한 실험적 연구)

  • Cheong, Seong-Ir;Kim, Tae-Wan;Lee, Chang-Gun;Kim, Doo-Hyun;Ahn, Young-Chull;Lee, Jae-Keun;Hwang, Yu-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.8
    • /
    • pp.541-546
    • /
    • 2008
  • A coolant operating condition in al fuel cell stack was an important factor to determine the temperature distribution which affected the fuel cell performance and relative humidity. In this study, the fuel cell performance was evaluated as a function of the coolant flow rate with the range of $0.1{\sim}0.8$ liter/min cell and the coolant inlet temperature of $20{\sim}82^{\circ}C$. The cell temperature increased with increasing the coolant inlet temperature and with decreasing the coolant flow rate. The coolant inlet temperature and flow rate to maintain the better performance of the fuel cell were in the range of $45{\sim}60^{\circ}C$ and $0.2{\sim}0.4$ liter/min cell, respectively. The experimental results showed that the optimal heat removal rate from the stack by coolant was $0.4{\sim}0.6W/cm^2$ cell.

Effects of Reactant Gas Flow Rates and Starvation on Phosphoric Acid Fuel Cell Performance (인산형 연료전지 발전성능에 미치는 반응기체 공급량 및 공급중단의 영향)

  • Song, Rak-Hyun;Kim, Chang-Soo;Choi, Byung-Woo;Choi, Soo-Hyun;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.662-665
    • /
    • 1992
  • Effects of reactant gas flow rates and starvation on phosphoric acid fuel cell performance were studied. As the reactant gas flow rates increased, the cell performance increased and then the cell maintained constant performance. The optimum flow rates of hydrogen, oxygen and air under galvanostatic condition of 150 mA/$\textrm{cm}^2$ are found to be 3cc/min${\cdot}\textrm{cm}^2$, 4cc/min${\cdot}\textrm{cm}^2$, and 15cc/min${\cdot}\textrm{cm}^2$, respectively. Hydrogen and oxygen starvation resulted in voltage loss of about 5mV and 0-2mV, respectively. The voltage loss was independent of starvation time. These results were discussed from the point of view of electrochemical reaction of the cell.

  • PDF

On Thermal and State-of-Charge Balancing using Cascaded Multi-level Converters

  • Altaf, Faisal;Johannesson, Lars;Egardt, Bo
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.569-583
    • /
    • 2013
  • In this study, the simultaneous use of a multi-level converter (MLC) as a DC-motor drive and as an active battery cell balancer is investigated. MLCs allow each battery cell in a battery pack to be independently switched on and off, thereby enabling the potential non-uniform use of battery cells. By exploiting this property and the brake regeneration phases in the drive cycle, MLCs can balance both the state of charge (SoC) and temperature differences between cells, which are two known causes of battery wear, even without reciprocating the coolant flow inside the pack. The optimal control policy (OP) that considers both battery pack temperature and SoC dynamics is studied in detail based on the assumption that information on the state of each cell, the schedule of reciprocating air flow and the future driving profile are perfectly known. Results show that OP provides significant reductions in temperature and in SoC deviations compared with the uniform use of all cells even with uni-directional coolant flow. Thus, reciprocating coolant flow is a redundant function for a MLC-based cell balancer. A specific contribution of this paper is the derivation of a state-space electro-thermal model of a battery submodule for both uni-directional and reciprocating coolant flows under the switching action of MLC, resulting in OP being derived by the solution of a convex optimization problem.

Diagnosis of HSC Convective Flow Using a Digital Holographic Interferometry and PIV System (디지털 홀로그래픽 간섭계와 PIV를 이용한 Hele-Shaw Cell 내부 열유동 해석)

  • Kim, Seok;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.493-499
    • /
    • 2004
  • Variations of temperature and velocity fields in a Hele-Shaw convection cell (HSC) were investigated using a holographic interferometry and 2-D PIV system with varying Rayleigh number. To measure quasi-steady variation of temperature field, two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed. In the double-exposure method, unwanted waves were eliminated effectively using a digital image processing technique. The reconstructed images are clear, but transient flow cannot be reconstructed clearly. On the other hand, transient convective flow can be reconstructed well using the real-time method. However, the fringe patterns reconstructed by the real-time method contain more noises, compared with the double-exposure method. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow structure at high Rayleigh numbers. The periodic flow pattern at high Rayleigh numbers obtained by the real-time holographic interferometer method is in a good agreement with the PIV results.

Effect of Flow Uniformity Device on the Catalytic Combustor for 5 kW High Temperature Fuel Cell System (5 kW급 고온형 연료전지 촉매 연소기 유동 균일화 장치가 연소 특성에 미치는 영향)

  • Lee, Sang-Min;Woo, Hyun-Tak;Ahn, Kook-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.878-883
    • /
    • 2011
  • Effect of flow uniformity on the reaction characteristics of a catalytic combustor for high temperature fuel cell system has been experimentally investigated in the present study. One of the most important factor in designing catalytic combustion is to avoid hot spot in catalysts. In this regard, it is very important to secure flow uniformity of combustor inlet. A couple of perforated plates were applied at the front of catalyst region as flow uniformity device with minimal pressure drop. Results show that the velocity and temperature profile became more uniform when applying the flow uniformity device. CO and $CH_4$ emissions at the combustor exit were decreased and the average exit temperature was slightly increased with the flow uniformity device.

Simulation of Liquid Crystals Considering Flow Effect (흐름효과를 고려한 액정의 시뮬레이션)

  • Kim Hoon;Park Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.260-266
    • /
    • 2006
  • In this paper, We coupled fluid balance and director balance equation from Ericksen-Leslie's continuum theory and observed the motion of Liquid Crystal molecular. We simulated flow velocity and director distribution in which flow effect is considered in switching on and switching off state. We interpreted the dynamic response characteristic caused by the flow. As the result of the simulation, We could see the flow effect. In the case of Twisted Nematic(TN) cell, this flow caused abnormal twist temporarily in switching off state. We could prove that this abnormal twist is a direct cause of optical bounce phenomenon known well until now with the result of simulation. In addition, We analyzed the mechanism of the fast response due to flow in the case of Optically Compensated Bend(OCB) cell.

Gasdynamic Adjustment at Modeling of Flight Conditions Appropriate M=6

  • 우관제
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.8-8
    • /
    • 2000
  • In this paper are presented main power and gasdynamic characteristics of C-l6VK hypersonic test cell of Research Test Center of CIAM. Gasdynamic adjustment of the C-l6VK test cell was carried out with the working section constructed on scheme of Ramjet/scramjet test in free stream. Gasdynamic adjustment was conducted stage by stage in tile following sequence. First, check and preparation of all technical systems and checking measuring system. Than determination of the characteristics of test cell on cold (without the heating of air at entrance) regime and determination of the characteristics of test cell on regimes with the heating of air. Finally determination of tile characteristics of test cell with the loading of the working part by object. On tile final stage of gasdynamic adjustment two experiments with tile axisymmetric Scramjet model loaded into the working part of test cell were conducted. The first experiment was conducted with the purpose of determination of flow parameters with the object leaded into the working part and verification of experiment cyclogram. The second experiment was conducted with injection of hydrogen into the combustion chamber of object, that is tile conditions on test cell simulated Scramjet flight Mach number M = 6. Such methodology of gasdynamic adjustment allows to determine influence of experimental object on flow parameters in the working part at different conditions of experiment (with the burning in combustion chamber of object and without the homing), and also to compare flow characteristics in the object duct.

  • PDF

In vivo Imaging Flow Cytometer (세포 이미징 기능을 겸비한 생체 유세포 분석기)

  • Lee, Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.1
    • /
    • pp.9-11
    • /
    • 2007
  • We introduce an in vivo imaging flow cytometer, which provides fluorescence images simultaneously with quantitative information on the cell population of interest in a live animal. As fluorescent cells pass through the slit of light focused across a blood vessel, the excited fluorescence is confocally detected. This cell signal triggers a strobe beam and a high sensitivity CCD camera that captures a snap-shot image of the cell as it moves down-stream from the slit. We demonstrate that the majority of signal peaks detected in the in vivo flow cytometer arise from individual cells. The instrument's capability to image circulating T cells and measure their speed in the blood vessel in real time in vivo is demonstrated. The cell signal irradiance variation, clustering percentage, and potential applications in biology and medicine are discussed.

Two-Phase Flow Analysis of The Hydrogen Recirculation System for Automotive Pem Fuel Cell (자동차용 고분자 연료전지 수소 재순환 시스템의 이상 유동해석)

  • Kwag, Hyun-Ju;Chung, Jin-Taek;Kim, Jae-Choon;Kim, Yong-Chan;Oh, Hyung-Seuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.446-454
    • /
    • 2008
  • The purpose of this paper is to analyze two-phase flows of the hydrogen recirculation system. Two-phase flow modeling is one of the great challenges in the classical sciences. As with most problems in engineering, the interest in two-phase flow is due to its extreme importance in various industrial applications. In hydrogen recirculation systems of fuel cell, the changes in pressure and temperature affect the phase change of mixture. Therefore, two-phase flow analysis of the hydrogen recirculation system is very important. Two-phase computation fluid dynamics (CFD) calculations, using a commercial CFD package FLUENT 6.2, were employed to calculate the gas-liquid flow. A two-phase flow calculation was conducted to solve continuity, momentum, energy equation for each phase. Then, the mass transfer between water vapor and liquid water was calculated. Through an experiment to measure production of liquid water with change of pressure, the analysis model was verified. The predictions of rate of condensed liquid water with change of pressure were within an average error of about 5%. A comparison of experimental and computed data was found to be in good agreement. The variations of performance, properties, mass fraction and two-phase flow characteristic of mixture with resepct to the fuel cell power were investigated.

A Study on Performance of Solid Oxide Fuel Cell System for Ship Applications (선박 전원용 고체산화물형 연료전지(SOFC) 시스템 성능에 관한 연구)

  • Park, Sang-Kyun;Roh, Gill-Tae;Kim, Mann-Eung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.582-589
    • /
    • 2011
  • The fuel cell technology has been considered as a technology to reduce greenhouse gases emission from a ship. In this research, internal reforming 500kW solid oxide fuel cell system fueled by methane for a ship were developed. Characteristics of gas temperature, stack power and system efficiency depending on the air flow rate, $CH_4$ flow rate, $H_2O$ flow rate, and system operation pressure are evaluated. As a result, air and $CH_4$ flow rate directly affect the temperature of inlet and outlet gas in the fuel cell stack. When the air and $H_2O$ flow rate increase, the stack power and system efficiency increases. However, the case of $CH_4$ flow rate increase, the efficiency decreases.