• Title/Summary/Keyword: floors

Search Result 864, Processing Time 0.031 seconds

A basic study of steel-joint connection method of composite precast concrete members (합성 PC부재의 Steel-joint Connection Method 개발 기초연구)

  • Kim, Geun-Ho;Lee, Dong-Hoon;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.10-11
    • /
    • 2013
  • Green Frame is a column-beam system formed by composite precast concrete column and beam connected with steel buried in both members. During the installation of Green columns, the columns of Green Frame, covering 3 floors per each piece and beams, the eccentricity can be observed due to the construction error and the weight of beam itself. Such eccentricity may have a little influence on a single frame, yet, it can develop critical issues to the installation of subsequent beams or beams on the upper floors in the context of a building as a whole that has multiple frames. These issues lead to delay in frame installation, decrease of productivity and increase of cost, etc. Therefore, this study presents a steel-joint connection method in order to solve the issues. The steel-joint connection method exists on slope plane and reinforcing plate in steel frame buried in composite PC members. Through this method, the issues can be resolved without requiring additional equipment or manpower.

  • PDF

Studies on the Energy Expenditure of the Use of the Electric Vacuum Cleaners (전기청소기 사용시의 에너지 소비량의 측정)

  • 신경주
    • Journal of the Korean Home Economics Association
    • /
    • v.20 no.4
    • /
    • pp.113-124
    • /
    • 1982
  • We have investited on the efficiency of the electric vacuum cleaners for household use. On this experiment, we have used the Expired Gas Analyer IHO6(SAN-EI, K.K) to get energy expenditure of house cleaning. The testing items are, (1) The difference of energy expenditure of cleaning for the each types of the test floors: Which are P-tile, Tatami, and 4 kinds of carpets. (2) The energy expenditure of cleaning for the room with a given quantity of furnitures: The volumes of furnitures are 0, 3, 10, 20% of the room with 2 kinds of chair. The results of the experiments are as follows. 1. The energy expenditure of cleaning for the types of test floors: Setting the energy expenditure on the basis of P-tile, Tatami needs 20~24% energy expenditure than P-tile, and carpet needs 60~64% energy expenditure than P-tile. 2. Cleaning time: The more the room has many furnitures, the more it takes longer. The types of vacuum cleaners, the Shoulder-type cleaner needs 1.19 times of the Upright-type, and the Cylender-type needs 1.08 times of the Upright-type. 3. The energy expenditure of cleaning for a given quantity of furnitures: The more the rooms has many furnitures, the more the energy expenditure increase. A 10% (20%) increases in the volume of the furniture causes a 100% (200%) increases in the energy expenditure of vacuum cleaners.

  • PDF

Simulation of the behaviour of RC columns strengthen with CFRP under rapid loading

  • Esfandiari, Soheil;Esfandiari, Javad
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.319-332
    • /
    • 2016
  • In most cases strengthening reinforced concrete columns exposed to high strain rate is to be expected especially within weak designed structures. A special type of loading is instantaneous loading. Rapid loading can be observed in structural columns exposed to axial loads (e.g., caused by the weight of the upper floors during a vertical earthquake and loads caused by damage and collapse of upper floors and pillars of bridges).Subsequently, this study examines the behavior of reinforced concrete columns under rapid loading so as to understand patterns of failure mechanism, failure capacity and strain rate using finite element code. And examines the behavior of reinforced concrete columns at different support conditions and various loading rate, where the concrete columns were reinforced using various counts of FRP (Fiber Reinforcement Polymer) layers with different lengths. The results were compared against other experimental outcomes and the CEB-FIP formula code for considering the dynamic strength increasing factor for concrete materials. This study reveals that the finite element behavior and failure mode, where the results show that the bearing capacity increased with increasing the loading rate. CFRP layers increased the bearing capacity by 20% and also increased the strain capacity by 50% through confining the concrete.

A Basic Study on the Module-based Stage Floor of Performing Arts Facilities (공연문화시설의 Stage Floor 모듈화에 관한 기초적 연구)

  • Kim, Jung-Seop;Ko, Jae-Min;Lim, Che-Zinn
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2007.11a
    • /
    • pp.30-36
    • /
    • 2007
  • Recently, many performing arts facilities are under construction to accommodate people's various interest in cultural experiences. However, due to Korea's lack of know-how in such constructions and an absence of proper regulations on design planning, each designer designs and constructs the facilities differently, so several problems are occurring in the process of construction, such as high production cost for stage sets, high labor cost, low efficiency of stage work, and complicated work process. This resulted in low quality production of performance. This study is conducted to address the need for a systematic study on stage floor, and to propose an efficient way of regulating stage work in existing performing arts facilitiesand new facilities to be built. By a comparative analysis of performing arts facilities in Korea, and by analyzing stage floors of the facilities, this research suggests minimum modules as well as an appropriate unit of modules based on the minimum modules; and provides basic data on stage floors, which can be used for remodeling existing facilities orfor planning new cultural facilities. Also, this study suggests various ways of utilizing performing arts facilities in Korea.

  • PDF

Architectural and Interior Design of Chosun University Hospital Medical Center (조선대학교 병원 전문진료센타 설계)

  • Park, Young-Ho
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2005.10a
    • /
    • pp.191-192
    • /
    • 2005
  • This project is to establish an annex clinic center under 5 floors with gross floor area of 3,000 Pyeong behind existing Chosun university Hospital main building with 600 beds. The goal of the design is connecting the new clinic center with the existing main building and completing a combined hospital that has synergy effects. Given the old condition of the hospital and characteristics of the ground, I tried to embody the image of Medical Pulse, which is very alive with strong pulse, and suggest vision of 21st century hospital. First, one main entrance as a combined hospital. For optimum access and functions, I used the entrance of existing building as the only main entrance of new combined hospital, rearrange the road in front of the main building and improve traffic system, and upgrade the image and function of combined main entrance by planning new atrium united robby that makes link to the main building easier. Second, section planning considering the optimum functions and convenience. I established 4 floors linking functionally with the existing building, minimized vertical traffic line, and enhanced convenience through barrier free environment, which is a horizontal traffic line without barriers, crucial to hospital. Third, combined zoning generating synergy effects. I linked sterilizing room with logistics center by operating room and service bridge, and arranged central treatment department horizontally, Also, by horizontally arranging cancer center and department of nuclear medicine close with PET and cyclotron center, I established identity of specialized departments.

  • PDF

Effect of progressive shear punch of a foundation on a reinforced concrete building behavior

  • Naghipour, Morteza;Niak, Kia Moghaddas;Shariati, Mahdi;Toghroli, Ali
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.279-294
    • /
    • 2020
  • Foundation of a building is damaged under service loads during construction. First visit shows that the foundation has been punched at the 6 column's foot region led to building rotation. Foundation shear punching occurring has made some stresses and deflections in construction. In this study, progressing of damage caused by foundation shear punching and inverse loading in order to resolve the building rotation has been evaluated in the foundation and frame of building by finite element modeling in ABAQUS software. The stress values of bars in punched regions of foundation has been deeply exceeded from steel yielding strength and experienced large displacement based on software's results. On the other hand, the values of created stresses in the frame are not too big to make serious damage. In the beams and columns of ground floor, some partial cracks has been occurred and in other floors, the values of stresses are in the elastic zone of materials. Finally, by inverse loading to the frame, the horizontal displacement of floors has been resolved and the values of stresses in frame has been significantly reduced.

Development of Stable Walking Robot for Accident Condition Monitoring on Uneven Floors in a Nuclear Power Plant

  • Kim, Jong Seog;Jang, You Hyun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.632-637
    • /
    • 2017
  • Even though the potential for an accident in nuclear power plants is very low, multiple emergency plans are necessary because the impact of such an accident to the public is enormous. One of these emergency plans involves a robotic system for investigating accidents under conditions of high radiation and contaminated air. To develop a robot suitable for operation in a nuclear power plant, we focused on eliminating the three major obstacles that challenge robots in such conditions: the disconnection of radio communication, falling on uneven floors, and loss of localization. To solve the radio problem, a Wi-Fi extender was used in radio shadow areas. To reinforce the walking, we developed two- and four-leg convertible walking, a floor adaptive foot, a roly-poly defensive falling design, and automatic standing recovery after falling methods were developed. To allow the robot to determine its location in the containment building, a bar code landmark reading method was chosen. When a severe accident occurs, this robot will be useful for accident condition monitoring. We also anticipate the robot can serve as a workman aid in a high radiation area during normal operations.

Analysis on the Building System Integration Methods of the Salk Institute for Biological Studies (솔크 생물학 연구소에 적용된 건물시스템 통합기법 분석에 관한 연구)

  • Choi, Joon Sung
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.7
    • /
    • pp.59-68
    • /
    • 2018
  • Salk Institute for Biological studies is widely considered as architectural masterpiece of Louis Kahn's. Its iconic plaza with symmetrical concrete structures, overlooking the Pacific ocean in La Jolla, has been acclaimed as a facade to the sky. Little has been written on Kahn's achievements in the building system integration in order to bridge the gap between technology and design. This paper explores the technical issues, the design intents, and the major building systems to identify the Kahn's integration methods between building systems. The project is analysed into four major systems; structure, mechanical, envelope, and interior system. The integration methods of building systems are investigated in physical, visual, and functional aspects. The most distinguished cases of building system integration are the introduction of the interstitial floors between the laboratories and the creation of the smooth and warm materiality of exposed concrete walls. Kahn proposed open floor plans for the laboratories which are capable of easily adapting to changing needs. He also introduced the interstitial floors which are framed of the vierendeel truss systems and deliberately overlapped the structure systems with the mechanical systems such as ducts, water pipes, and electric conduits. The exposed concrete walls mixed with pozzolan ashes look very much like granite or limestone as the result of the physical and visual integration between structure, envelope, and interior systems.

A Study on Performance Assessment of Dry Floors Applied to Long-life Housing (장수명주택에 적용되는 건식바닥의 성능평가에 관한 연구)

  • Seo, Dong-Goo;Lee, Jong-Ho;Kim, Soo-Am;Shin, Yun-Ho;Hwang, Eun-Kyoung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.5
    • /
    • pp.133-143
    • /
    • 2019
  • Various problems regarding the wet floor method such as its complicated process and waste of thermal storage have been raised, but the usage of dry floor recommended for long-life housing has declined due to lack of confidence on the performance of dry floor. The purpose of this study is to secure the credibility of dry floor. Under this purpose, this study considered precedent studies and established directions to secure the performance of long-life housing infill, and thus, 9 performance items (Impact sound, Smoothness, thermal comfort, sensation hardness while walking, falling safety, impact resistance, local compression load, local strength and strain at heating) were drawn. In addition, the experiment was carried out for 5 performances except for legal performance, some dry floor performances and whole spatial performance. As a result, an appropriate result from all performances except was obtained. The performance of dry floor was verified for each item from these results and it is expected to use such results as basic data on dry floor in the future.

Numerical Study on the Fire Damaged Reinforced Concrete Building Structures Considering Influencing Fire Case and Parameters of Columns (화재피해를 받은 철근콘크리트 건축물의 기둥의 영향인자를 고려한 해석적 연구)

  • Suh, Yeonwoo;Son, Hee Ju
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.101-112
    • /
    • 2022
  • Expanding urbanization practices result in high numbers of buildings being developed in city centers. This high building concentration leads to an increased fire risk, resulting in higher casualty rates and increased economic damages compared to fires in the past. The purpose of this study was to analyze the structural behavior of fire-damaged reinforced concrete buildings using analytical methods and to suggest methods of improving fire resistance in the event of a fire. Damage levels were measured using commercial software to apply the finite element method, ABAQUS, and MIDAS GEN to the dataset. Load-deflection curves were calculated using the effective area and moment of inertia of the fire-damaged columns provided by ABAQUS. The results of this analysis indicate that fire-damaged beams with experience greater deflection from indoor fires than they will from outdoor fires. Fires that occurred on the middle floors were more dangerous than those occurring on higher floors, and eccentrically loaded columns experienced more damage than axially loaded columns. The results indicate that these methods accurately predict structural behaviors of fire damaged concrete columns by considering fire exposure area and eccentric loading.