• Title/Summary/Keyword: floors

Search Result 862, Processing Time 0.023 seconds

Control of wind-induced motion in high-rise buildings with hybrid TM/MR dampers

  • Aly, Aly Mousaad
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.565-595
    • /
    • 2015
  • In recent years, high-rise buildings received a renewed interest as a means by which technical and economic advantages can be achieved, especially in areas of high population density. Taller and taller buildings are being built worldwide. These types of buildings present an asset and typically are built not to fail under wind loadings. The increase in a building's height results in increased flexibility, which can lead to significant vibrations, especially at top floors. Such oscillations can magnify the overall loads and can be annoying to the top floors' occupants. This paper shows that increased stiffness in high-rise buildings may not be a feasible solution and may not be used for the design for comfort and serviceability. High-rise buildings are unique, and a vibration control system for a certain building may not be suitable for another. Even for the same building, its behavior in the two lateral directions can be different. For this reason, the current study addresses the application of hybrid tuned mass and magneto-rheological (TM/MR) dampers that can work for such types of buildings. The proposed control scheme shows its effectiveness in reducing floors' accelerations for both comfort and serviceability concerns. Also, a dissipative analysis carried out shows that the MR dampers are working within the possible range of optimum performance. In addition, the design loads are dramatically reduced, creating more resilient and sustainable buildings. The purpose of this paper is to stimulate, shape, and communicate ideas for emerging control technologies that are essential for solving wind related problems in high-rise buildings, with the objective to build the more resilient and sustainable infrastructure and to optimally retrofit existing structures.

An Institutional Improving Standards for Water Reclamation/Reuse(WRR) System Establishment to Buildings (건축물의 중수도 설치기준에 대한 제도적 개선방안)

  • Kong, Young Hyo
    • KIEAE Journal
    • /
    • v.6 no.3
    • /
    • pp.43-48
    • /
    • 2006
  • This paper aims to suggest ways of institutionally improving standards that must be applied when installing Water Reclamation/Reuse (WRR) system based on efficiency analysis. Currently, the standard for WRR system establishment requires that the system should treat more than 10% of used water in the building of over $60,000m^2$ in total area of all floors, but our research has found that it would be more effective to change the standard to $150-m^3-per-day$ reclaimed water or the total area of all floors of $30,000m^2$ ($50,000m^2$ in the case of an office building). In other words, what this paper suggests is not a one-size-fits-all standard based on the total area of all floors, but a reasonable and flexible standard that takes into account efficiency and a unit water usage according to a building's purpose. Furthermore, this paper recommends a new WRR standard that can be applied to large-scale land development for housinglots, like the New Town. The recommendation is based on the economic analysis that the WRR system will ensure efficiency only if the amount of reclaimed water is over 4,000 tons per day, which corresponds to 4 millions square meters of housinglots. Regarding the size of the established facility, this paper suggests changing the standard, which is now set at over 10% of water usage, to what is relative to the total amount of use of reclaimed water in order to ensure efficiency and promote use of reclaimed water. In addition, this paper proposes that governmental support should be offered not only to facility owners, who are recipients at present, but also to facility builders. By doing so, those who donate a facility to the government, central or local, after building it, can be provided with substantial aid. Therefore, the application of the institutional improvement suggested in this paper is expected to create environment-friendly living conditions and boost the quality of life by encouraging people to secure water resources efficiently in buildings, and in a wider range, in cities.

Design and Performance Analysis of Real-Time Hybrid Position Tracking Service System using IEEE 802.15.4/4a in the Multi-Floor Building (복합환경에서 IEEE 802.15.4/4a를 이용한 하이브리드 실시간 위치추적 서비스 시스템 설계 및 성능분석)

  • Kim, Myung-Hwan;Chung, Yeong-Jee
    • Journal of Information Technology Services
    • /
    • v.10 no.1
    • /
    • pp.105-116
    • /
    • 2011
  • With recent spotlight on the, uniquitous computing technology, the need for object of indentification and location infrastructure has increased. Such GPS technolgy must utilize IEEE 802.15.4 Zigbee used for existing wireless sensor network infra as a basice element for user's context-awareness in a uniquitous environement, for effectiveness.Such real-time GPS service is provided in the internal environment where the user would actually are and most high-rise buildlings apply. Underthe assumption, the real-time GPS technology is seperated by each floor, and signals do not get transmitted to other floors, the application on one floor within the high-rise buildling was conducted. This study intends to suggest a floor detection algorithm using IEE 802.15.3/Zigbee's RSSI which supports the accuracy within a couple of meters for the user's the movement between the floors in high-rise buildings in a complex environment. It proposes an floor detection algorithm using IEEE 802.15.4/Zigbee's RSSI which provides accuracy within a radius of few meters for the users movement between the floors for real-time location tracking within high-rise building in a cmoplex environment. Furthermore, for more accurate real-time location tracking, it suggests an algorithm for real-time location tracking using IEEE 802.15.4a/Zigbee's CSS technology based on triangulation. Based on the suggested algorithm, it designs a hybrid real-time location tracking service system in a high-rise buildling and test its functions.

The seismic reliability of two connected SMRF structures

  • Aval, Seyed Bahram Beheshti;Farrokhi, Amir;Fallah, Ahmad;Tsouvalas, Apostolos
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.151-164
    • /
    • 2017
  • This article aims to investigate the possible retrofitting of a deficient building with soft story failure mode by connecting it to an adjacent building which is designed based on current code with friction dampers at all floors. Low cost and high performance reliability along with significant energy dissipation pertaining to stable hysteretic loops may be considered in order to choose the proper damper for connecting adjacent buildings. After connecting two neighbouring floors by friction dampers, the sliding forces of dampers at various stories are set in two arrangements: uniform sliding force and then variable sliding force. In order to account for the stochastic nature of the seismic events, incremental dynamic analyses are employed prior and after the installation of the friction dampers at the various floors. Based on these results, fragility curves and mean annual rate of exceedance of serviceability and ultimate limit states are obtained. The results of this study show that the collapse mode of the deficient building can affect the optimum arrangement of sliding forces of friction dampers at Collapse Prevention (CP) performance level. In particular, the Immediate Occupancy (IO) performance level is not tangible to the sliding force arrangement and it depends solely on sliding force value. Generally it can be claimed that this rehabilitation scheme can turn the challenge of pounding two adjacent buildings into the opportunity of dissipating a large amount of the seismic input energy by the friction dampers, thus improving significantly the poor seismic performance of the deficient structure.

Study on the Development of Concrete Public Sign Block (콘크리트 공공 사인 블록 개발에 대한 연구)

  • Lee, Ung-Kyun;Lee, Sung-Chul;Kim, Jong Yoon;Kim, Baek-Joong
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.266-274
    • /
    • 2021
  • Purpose: The purpose of this study is to develop a concrete public sign block for floors that can provide pedestrian safety and various information. Method: In order to achieve these research objectives, step-by-step block manufacturing techniques applied in relation to the development of public sign blocks were proposed, and the field applicability of the developed concrete public sign blocks was evaluated. Result: The concrete public sign block for floors developed in this study is expected to be capable of expressing public signs of various shapes and to reduce manufacturing cost. As a result of the usability evaluation for two years, no problems such as cracks, edge dropouts, discoloration, and abrasion were found, so it is judged that sufficient durability was secured. Conclusion: Based on these research results, it is expected that the concrete public sign block will be used as an alternative to secure the weaknesses such as stickers, stone and brass plates that have been used in the existing public sign for floors. It is expected that it can be applied in various fields.

Characterizing the Effects of Microclimate on the Growth of Ginseng Seedlings using Multi-layer Bed Production Facilities (다층베드시설을 이용한 묘삼 생산 시 미기상 환경과 생육특성)

  • Jang, Myeong Hwan;Kim, Seung Han;Choi, Yangae;Won, Do Yeon;Kim, Im Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.6
    • /
    • pp.490-497
    • /
    • 2018
  • Background: The growth process of ginseng seedlings is very important in producing good quality ginseng. This study was carried out to investigate the effects of different microclimates on the growth characteristics of ginseng seedlings in a multi-layer bed facility. Methods and Results: Ginseng seedlings were cultivated in a three-layer bed facility. The air temperatures on the first and second floors were similar, while that on the third floor was about $1-4^{\circ}C$ higher than that on the other floors. The vapor pressure deficit (VPD) was higher inside than on the outside of the facility, and that on third floor was the highest in the multi-layer bed system. The photosynthetic rate, chlorophyll fluorescence, and growth characteristics of ginseng seedlings did not significantly differ among the three floors. The yield of ginseng seedlings was the highest at $721g/1.62m^2$ on the first floor. Conclusions: It was found that microclimate plays an important role in growing ginseng seedlings in multi-layer bed facilities, and therefore proper environmental control is important. In addition, producing ginseng seedlings using multi-layer bed facilities is a technology that is expected to provide a way to overcome climate change and stabilize ginseng production.

Analysis of Applicability of Active Noise Control (ANC) technique for Reducing Inter-Floor Noise in Apartment Buildings (공동주택 층간소음 저감을 위한 능동소음제어(ANC) 기술 적용가능성 분석)

  • Nam, Jin-Won;Kim, Ho-Jin;Kim, Jun-Hwan;Wee, Hyuk;Kim, Joong-Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.49-56
    • /
    • 2022
  • In this study, numerical simulations for reducing noise between floors in an apartment building was carried out using Active Noise Control (ANC) technology. In order to examine the feasibility of using ANC to reduce noise between floors, accelerometers and microphones for noise collection were installed in the inter-floor noise test facility to measure noise and vibration caused by the impact ball drop test. By using the measured data, Filtered-x Least Mean Square (Fx-LMS) algorithm-based ANC simulations were carried out. In the simulations, after deriving optimal simulation conditions including the adaptive control convergence coefficient, the noise reduction effect was analyzed through numerical simulations using the number of installed accelerometers and speakers as variables. Finally, it was confirmed that the noise between floors could be reduced using ANC technology under limited conditions.

Configuration assessment of MR dampers for structural control using performance-based passive control strategies

  • Wani, Zubair R.;Tantray, Manzoor A.;Iqbal, Javed;Farsangi, Ehsan Noroozinejad
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.329-344
    • /
    • 2021
  • The use of structural control devices to minimize structural response to seismic/dynamic excitations has attracted increased attention in recent years. The use of magnetorheological (MR) dampers as a control device have captured the attention of researchers in this field due to its flexibility, adaptability, easy control, and low power requirement compared to other control devices. However, little attention has been paid to the effect of configuration and number of dampers installed in a structure on responses reduction. This study assesses the control of a five-story structure using one and two MR dampers at different stories to determine the optimal damper positions and configurations based on performance indices. This paper also addresses the fail-safe current value to be applied to the MR damper at each floor in the event of feedback or control failure. The model is mathematically simulated in SIMULINK/MATLAB environment. Linear control strategies for current at 0 A, 0.5 A, 1 A, 1.5 A, 2 A, and 2.5 A are implemented for MR dampers, and the response of the structure to these control strategies for different configurations of dampers is compared with the uncontrolled structure. Based on the performance indices, it was concluded that the dampers should be positioned starting from the ground floor, then the 2nd floor followed by 1st and rest of the floors sequentially. The failsafe value of current for MR dampers located in lower floors (G+1) should be kept at a higher value compared to dampers at top floors for effective passive control of multi-story structures.

Variation of Cardiopulmonary Function by Use of Building Stairs (건물 계단 이용에 따른 심폐기능의 변화)

  • Yi, Seung-Ju
    • Journal of Korean Physical Therapy Science
    • /
    • v.3 no.2
    • /
    • pp.989-995
    • /
    • 1996
  • This study was conducted to investigate variation of cardiopulmonary function by use of building stairs, a questionnair survey and measurement was carried out for 50 students of department of physical therapy Andong Junior College from 20th September to 3rd October, 1995. The result were as follows: The average systolic blood pressure(SBP) of stability for 50 college students who were measured was 121.3 mmHg, the average diastolic blood pressure(DBP) of stability was 78.5 mmHg, the average pulse frequency of stability was 71.8(frequency/min), the average breathing frequency of stability was 20.4(frequency/min), and the body temperature of stability was $36.8^{\circ}C$. SBP among the second, third, and fourth floors was 129.0 mmHg, 127.0 mmHg, and, 132.0 mmHg (p=0.1919), DBP was 80.1 mmHg, 76.5 mmHg, and, 82.0 mmHg (p=0.4229), the pulse frequency was 74.0, 73.1, and 74.0(frequency/min). The breathing frequency among the second, third, and fourth floors was statistically gradually increased according to 21.4, 23.1 and 24.6(frequency/min)(p=0.0071). The body temperature among the second, third, and fourth floors was statistically less and less decreased according to $36.8^{\circ}C,\;36.6^{\circ}C$ and $36.5^{\circ}C$(p=0.0040). It was revealed by this study, the breathing frequency among the second, third, and fourth floors was statistically significant increased, the body temperature was statistically significant decreased.

  • PDF

Shrinkage Stress Analysis of Concrete Slab in Multi-Story Building Considering Construction Sequence (시공단계를 고려한 고층건물 콘크리트 슬래브의 건조수축 응력해석)

  • 김한수;정종현;조석희
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.457-465
    • /
    • 2001
  • Shrinkage strains of concrete slab in multi-story building are restrained by structural members such as columns or walls, then can induce cracks due to excessive shrinkage stress over tensile strength of member. In this study, a shrinkage stress analysis method of concrete slab in multi-story building considering not only material properties such as shrinkage, creep and reinforcement effect but also construction sequence is proposed. Tensile stresses of slab due to shrinkage are calculated by converting shrinkage strains into equivalent temperature gradients, creep that can release shrinkage stress can be considered by replacing the modulus of elasticity of concrete, Ec , to the effective secant modulus of elasticity of concrete, E$\_$eff/ Reinforcements are also considered by modeling them as equivalent beam elements in FEM program. Results of step by step analysis reflecting construction sequence summed up to calculate stresses of the whole building considering that shrinkage stresses of the building come from the difference of shrinkage between i-th floor and (i-1)-th floor, named as effecitive shrinkage, and it can be varied by construction sequence. The results of 10-story example building show that shrinkage stresses of lower floors are greater than those of upper floors, that is, stresses of lower floors(1∼2FI.) exceed modulus of rupture of concrete, but stress ratios of higher floors are in the range of 27.9∼92.8%.