• Title/Summary/Keyword: flood-control effect

Search Result 143, Processing Time 0.031 seconds

Analysis of flood control effect by applying variable restricted water level on rehabilitated agricultural reservoir (둑높이기 저수지의 가변 홍수기 제한수위 적용에 따른 홍수조절효과 분석)

  • Ryu, Jeong Hoon;Song, Jung Hun;Kang, Moon Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.369-369
    • /
    • 2017
  • 농업용저수지는 이수 목적으로 비홍수기 농업용수 공급을 위한 용수 확보를 주요 목적으로 하고 있다. 한편, 농업용저수지가 홍수조절능력 또한 지니고 있음이 다수의 연구를 통해 제기되고 있으며, 이에 치수 목적으로 홍수기 홍수피해 저감을 위한 치수 대책 또한 수립할 필요가 있다. 현재 우리나라 농업용저수지의 홍수기 운영은 제한수위 방식을 기준으로 하되 필요에 따라 예비방류를 허용하는 조합 형태를 취하고 있다. 이러한 운영 방식은 홍수기 이후 상시만수위로 복귀하지 못하면 해당 년도 잔여 비홍수기 혹은 다음 년도 영농 시작 시기의 농업용수 공급에 차질이 생길 수 있다는 문제점이 있다. 따라서 홍수기 농업용저수지의 운영은 홍수조절과 함께 상시만수 위로의 복귀를 동시에 고려하여 이루어질 필요가 있다. 가변 홍수기 제한수위 (Variable Restricted Water Level, VRWL) 방식은 홍수 발생빈도와 규모를 고려하여 단위기간별 (일별 혹은 순별) 제한수위를 차등 부여하는 방식으로, 한정된 저수공간의 효율적 재할당에 따라 이수와 치수의 효율을 증대시키는 방안이 될 수 있다. 따라서 본 연구에서는 농업용저수지를 대상으로 저수지 유입량 빈도해석을 수행하고 순별 가변 홍수기 제한수위를 산정한 후 가변 홍수기 제한수위 적용에 따른 홍수조절효과를 평가하고자 한다. 연구대상지는 전국 110개 둑높이기 농업용저수지 중 가능최대홍수량 대상저수지 (유역면적 2,500 ha 이상, 총 저수량 500만 톤 이상) 12개소로 선정하였고, 저수지별 기상자료와 지형자료를 구축하였다. 저수지 유입량 모의를 위하여 장기유출량 산정 모형인 TANK를 이용하였으며, 구축된 저수지 유입량 자료를 토대로 순별 유입량 빈도해석을 수행하고 홍수기 저수지 유입량의 이론적 확률분포형을 선정하였다. 선정된 확률분포형을 토대로 초과확률 10%에 따른 순별 저수지 수위로서 가변 홍수기 제한수위를 산정하였다. 산정된 가변홍수기 제한수위 적용 효과를 분석하기 위하여 홍수조절용량을 산정하였고, 유역비 홍수량을 지표로 하여 홍수조절능력을 평가하였다. 향후 본 연구의 결과는 둑높이기 농업용저수지의 홍수기 제한수위 설정 및 관리, 운영 지침 개선에 있어 기초자료로 활용할 수 있을 것으로 사료된다.

  • PDF

Analysis of Habitat Conditions by Tree Density and Discharge in the Geum River (수목밀도와 유량에 따른 금강의 물리서식처 변화 분석)

  • Mikyoung Choi;Taeun Kang;Changlae Jang
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.250-257
    • /
    • 2023
  • Tree in river have environmental functions such as ecosystem preservation and flood control functions that protect the riverbank. On the other hand, excessive tree development can have the negative effect of fixing the sand bar and reducing the cross-sectional area. Nays2D simulation results performing two flow conditions (average dam operation discharge and two-year frequency discharge) and four tree density conditions (current, zero, low, high tree density) used as input data for PHABSIM to calculate WUA (Weighted Usable Area). The results show that riverbed changes occur more significantly in the zero tree density than presence of trees, which could have a positive impact on the biological habitat environment of Zacco platypus.

Growth of Chrysanthemum Cultivars as Affected by Silicon Source and Application Method

  • Sivanesan, Iyyakkannu;Son, Moon Sook;Soundararajan, Prabhakaran;Jeong, Byoung Ryong
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.544-551
    • /
    • 2013
  • The effect of different silicon (Si) sources and methods of application on the growth of two chrysanthemum cultivars grown in a soilless substrate was investigated. Rooted terminal cuttings of Dendranthema grandiflorum 'Lemmon Eye' and 'Pink Eye' were transplanted into pots containing a coir-based substrate. A nutrient solution containing 0 or $50mg{\cdot}L^{-1}$ Si from calcium silicate ($CaSiO_3$), potassium silicate ($K_2SiO_3$) or sodium silicate ($Na_2SiO_3$) was supplied once a day through an ebb-and-flood sub irrigation system. A foliar spray of 0 or $50mg{\cdot}L^{-1}$ Si was applied twice a week. Cultivar and application method had a significant effect on plant height. Cultivar, application method, and Si source had a significant effect on plant width. Of the three Si sources studied, $K_2SiO_3$ was found to be the best for the increasing number of flowers, followed by $CaSiO_3$ and $Na_2SiO_3$. In both the cultivars, sub irrigational supply of Si developed necrotic lesions in the older leaves at the beginning of the flowering stage as compared to the control and foliar spray of Si. Cultivar, application method, Si source, and their interactions had significant influence on leaf tissue concentrations of calcium (Ca), potassium (K), phosphorus (P), magnesium (Mg), sulfur (S), sodium (Na), boron (B), iron (Fe), and zinc (Zn). The addition of Si to the nutrient solution decreased leaf tissue concentrations of Ca, Mg, S, Na, B, Cu, Fe, and Mn in both cultivars. The greatest Si concentration in leaf tissue was found in 'Lemmon Eye' ($1420{\mu}g{\cdot}g^{-1}$) and 'Pink Eye' ($1683{\mu}g{\cdot}g^{-1}$) when $K_2SiO_3$ was applied through a sub irrigation system and by foliar spray, respectively.

The Study of the Influence on Long Term Streamflow Caused by Artificial Storage Facilities Based on SWAT Modeling Process (SWAT모형을 이용한 인공저류시설물의 하류장기유출 영향분석 기법에 관한 연구)

  • Shin, Hyun-Suk;Kang, Du-Kee
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.227-240
    • /
    • 2006
  • In the several decades, various storage facilities have been developed and operated to supply water resource, flood control or environmental preservation etc. Then, how those man-maid storage facilities affect on the downstream water and environment and how the hydrologists can evaluate those features for water resources problem-solving are high-concentrated problems in this field. Most large watersheds in Korea contain various types of artificial facilities such dams, reservoirs, in-land ponds, wetlands etc. But the study to develop the technology for achieving the effect of the variances and properties of the long term streamflow caused by the artificial storage facilities have been on the simple watershed models and experimental modeling in the real fields. In this paper, we introduce the procedure and methods to consider the above problems based on continuous and semi-distributed featured SWAT model. At the first, we describe the elements and mechanisms of storage facilities in SWAT model to see how we can apply that in proper and appropriate manner for real field problems. Then, we applied the process to a sample watershed, Taewha River basin which covers the most of Ulsan region. Specially, we concentrate on our effort to the effect of upper reservoirs on down stream long term flows based on various scenario basis. The result was described and analysed in spacial and temporal variations on that basin using the precise manner.

A Study on the Nutrition Contents and Blood Glucose Response Effect of Diabetic-Oriented Convenience Food prepared Medicinal Plants and Chicken (생약재와 닭고기를 이용하여 개발된 편의 당뇨식사의 영양성분 및 혈당반응)

  • 한종현;박성혜
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.12 no.2
    • /
    • pp.91-99
    • /
    • 2002
  • This study was carried out to develop a diabetic-oriented convenience flood using 7 medicinal plants (Schisandra chinensis, Coix lachryma-jobi, Dioscorea batatas, Ophipogon japonicus, Lyicium chinense, Houttuynia cordata, Polygonatum sibiricum) and chicken. Portion size was 310g, total calorie was 551.6 kcal and carbohydrate, lipid and protein were consisted of 53.0%, 20.9% and 26.1%, respectively. Calcium, zinc and iron content were 268.9mg, 5.4mg and 6.1mg, respectively. Crude fiber content was 22.9g. In sensory evaluation, the scores of taste, color, texture and overall acceptability were higher than normal diabetic meal. Hypoglycemic effect of the device meal for diabetic persons was excellent compared to that of normal diabetic meal. The above results indicate that the 7 medicinal plants can be used as functional ingredients fur diabetic-oriented convenience flood industry. Also, device meal can be used as ready-prepared food for weight control.

  • PDF

Research Trends on Soil Erosion Control Engineering in North Korea (북한의 사방공학 분야 연구동향 분석)

  • Kim, Kidae;Kang, Minjeng;Kim, Dongyeob;Lee, Changwoo;Woo, Choongshik;Seo, Junpyo
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.469-483
    • /
    • 2019
  • North Korea has experienced floods and sediment-related disasters annually since the 1970s due to deforestation. It is of paramount importance that technologies and trends related to forest restoration and soil erosion control engineering be properly understood in a bid to reduce damage from sediment-related disasters in North Korea, and to effect national territorial management following unification. This paper presents a literature review and bibliometric analysis including 146 related articles published in North Korea. First, we analyzed the textual characteristics of the articles. We then employed the VOSviewer software package to classify the research topic and analyzed this topic based on the time change. The results showed that articles on the topic have consistently increased since the 1990s. In addition, research related to soil erosion control engineering has been classified into four subjects in North Korea: (i) assessment of hazard area on soil erosion and soil loss, sediment related-disasters; (ii) hydraulic and hydrologic understanding of forests; (iii) reasonable construction of soil erosion control structures; and (iv) effects and management plan of soil erosion control works. The proportion of research related to the (ii) hydraulic and hydrologic understanding of forests had been significant during the reign of Kim Ilsung. However, the proportion of research related to the (i) assessment of hazard area on soil erosion and soil loss, sediment-related disasters, increased during the reign of Kim Jongil and Kim Jongun. Using these results, our analysis indicated that an interest in and need for soil erosion control engineering in North Korea has continually increased. The results of this study are expected to serve as a basis for preparing forestry cooperation between North and South Korea, and to serve as essential data for better understanding soil erosion control engineering in North Korea.

A Study of Impacts of Human Interference on the Gapcheon River Basin in Daejeon City (도시하천에 대한 인위적 간섭 특성 및 하천 관리 방안 - 대전시 갑천유역을 중심으로 -)

  • Kim, Doo-Il
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.1
    • /
    • pp.1-18
    • /
    • 2008
  • If there is no choice but to be urbanized, we should examine how human interference has had influences on the area to keep the river environment safe and stable. This study is aimed at finding improvement by examining the effect of human interference in Gapcheon river in Daejeon, which is developing fast. Distinctive features of human interference in Gapcheon river are followings. First, middle and upper reaches of Gapcheon river are being maintained and restored focusing on flood control but are scheduled to develop city and channel. Second, the rear area of middle and lower reaches of Gapcheon river is already developed into an urban district and solidified into artificial stream for leisure activities installing the artificial structure for fun. Third, lower reaches of Gapcheon river are in an unstable condition because of straightening waterway and developing rear area of river. Up to now, geographical features and bio-diversity of Gapcheon river has been ruined by the artificial management of river centered for technical engineering. From now on, followings should be considered for management of urban river. First, it is focused on maintaining eco system by itself than usage for human. Second, natural features of rear area of river should be taken into consideration and should be preserved before developing urban city and hills, back marsh, channel deposit and swamp to directly have an influence on river.

  • PDF

Assessment of Drought Severity over South Korea using Standardized Precipitation Evapo-transpiration Index (SPEI) (표준강수 증발산지수(SPEI)를 이용한 남한지역의 가뭄심도 평가)

  • Kim, Byung-Sik;Sung, Jang-Hyun;Kang, Hyun-Suk;Cho, Chun-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.887-900
    • /
    • 2012
  • Drought is a non-negligible disaster of nature and it is mainly caused by rainfall shortage for a long time though there are many definitions of drought. 'Standard Precipitation Index' (SPI) that is widely used to express the level of meteorological drought intensity has a limit of not being able to consider the hydrological changes such as rainfall and evapotranspiration caused by climate change, because it does not consider the temperature-related variables other than the precipitation. Recently, however, 'Standardized Precipitation Evapotranspiration Index' (SPEI), a drought index of new concept which is similar to SPI but can reflect the effect of temperature variability as well as the rainfall change caused by climate variation, was developed. In this study, the changes of drought occurrence in South Korea were analyzed by applying SPEI for meteorological data (1973~2011) of 60 climate observatories under Korea Meteorological Administration (KMA). As the result of application, both of SPI and SPEI showed the trend of deepening drought in spring and winter and mitigating drought in summer for the entire nation, with SPI showing greater drought intensity than SPI. Also, SPI and SPEI with 12 months of duration showed that severe droughts with low frequency of around 6 years are generally being repeated.

Study of the Construction of a Coastal Disaster Prevention System using Deep Learning (딥러닝을 이용한 연안방재 시스템 구축에 관한 연구)

  • Kim, Yeon-Joong;Kim, Tae-Woo;Yoon, Jong-Sung;Kim, Myong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.590-596
    • /
    • 2019
  • Numerous deaths and substantial property damage have occurred recently due to frequent disasters of the highest intensity according to the abnormal climate, which is caused by various problems, such as global warming, all over the world. Such large-scale disasters have become an international issue and have made people aware of the disasters so they can implement disaster-prevention measures. Extensive information on disaster prevention actively has been announced publicly to support the natural disaster reduction measures throughout the world. In Japan, diverse developmental studies on disaster prevention systems, which support hazard map development and flood control activity, have been conducted vigorously to estimate external forces according to design frequencies as well as expected maximum frequencies from a variety of areas, such as rivers, coasts, and ports based on broad disaster prevention data obtained from several huge disasters. However, the current reduction measures alone are not sufficiently effective due to the change of the paradigms of the current disasters. Therefore, in order to obtain the synergy effect of reduction measures, a study of the establishment of an integrated system is required to improve the various disaster prevention technologies and the current disaster prevention system. In order to develop a similar typhoon search system and establish a disaster prevention infrastructure, in this study, techniques will be developed that can be used to forecast typhoons before they strike by using artificial intelligence (AI) technology and offer primary disaster prevention information according to the direction of the typhoon. The main function of this model is to predict the most similar typhoon among the existing typhoons by utilizing the major typhoon information, such as course, central pressure, and speed, before the typhoon directly impacts South Korea. This model is equipped with a combination of AI and DNN forecasts of typhoons that change from moment to moment in order to efficiently forecast a current typhoon based on similar typhoons in the past. Thus, the result of a similar typhoon search showed that the quality of prediction was higher with the grid size of one degree rather than two degrees in latitude and longitude.

Spatial Assessment of Effects of Near-Stream Groundwater Pumping on Streamflow Depletion (하천변 지하수 양수로 인한 하천수 감소 영향의 공간적 평가 - 죽산천 유역을 중심으로 -)

  • Lee, Jeongwoo;Kim, Nam Won;Chung, Il Moon;Lee, Min Ho
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.545-552
    • /
    • 2015
  • The objective of this study is to spatially assess the streamflow depletion due to groundwater pumping near the main stream of Juksanchoen watershed. The surface water and groundwater integrated model, SWAT-MODFLOW, in this study, was used to simulate streamflow responses to each groundwater pumping from wells located within 500m from the stream. The simulated results showed that the streamflow depletion rate divided by the pumping rate for each well location ranges from 20% to 96%. In particular, the streamflow depletion exceeds 60% of pumping rate if the distance between stream and well is lower than 100 m, hydraulic diffusivity is higher than $500m^2/d$, and streambed hydraulic conductance is above 25m/d. The simulated results were also presented in the form of spatial distribution maps that indicate the fraction of the well pumping rate in order to show the effect of a single well more comprehensively and easily. From the developed areal distribution of stream depletion, higher and more rapid responses to pumping occur near middle-downstream reach, and the spatially averaged percent depletion is about 66.7% for five years of pumping. The streamflow depletion map can provide objective information for the near-stream groundwater permission and management.