• Title/Summary/Keyword: flood simulation

Search Result 591, Processing Time 0.023 seconds

A Study on Calibration of Tank Model with Soil Moisture Structure (토양수분 저류구조를 가진 탱크모형의 보정에 관한 연구)

  • Kang, Shin-Uk;Lee, Dong-Ryul;Lee, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.2
    • /
    • pp.133-144
    • /
    • 2004
  • A Tank Model composed of 4 tanks with soil moisture structure was applied to Daecheong Dam and Soyanggang Dam watersheds. Calibration and verification were repeated 332 and 472 times for each watershed using SCE-UA global optimization method for different calibration periods and objective functions. Four different methods of evapotranspiration calculation were used and evaluated. They are pan evaporation, 1963 Penman, FAO-24 Penman-Monteith, and FAO-56 Penman-Monteith methods. Tank model with soil moisture structure showed better results than the standard tank model for daily rainfall-runoff simulation. Two types of objective function for model calibration were found. Proper calibration period are 3 years, in which dry year and flood year are included. If a calibrationperiod has an inadequate runoff rate, the period should be more than 8 years. The four methods of eyapotranspiraton computation showed similar results, but 1963 Penman method was slightly inferior to the other methods.

Effect of irrigation reservoir, antecedent soil moisture condition and Huff time distribution on peak discharge in a basin (농업용 저수지, 선행토양함수조건 및 Huff 시간 분포가 유역의 첨두홍수량에 미치는 영향 분석)

  • Kwon, Minsung;Ahn, Jae-Hyun;Jun, Kyung Soo;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.417-424
    • /
    • 2018
  • This study analyzed the effect of irrigation reservoirs, antecedent soil moisture conditions (AMC) and Huff time distribution on peak discharge using Monte Carlo simulation. The peak discharge was estimated for four different cases in combination of irrigation reservoir capacity, AMC, and Huff time distribution. Applying 100% reservoir capacity or AMC-III, the peak discharges corresponding return periods of 50~300 years were overestimated by 25~30% compared to those of cases that considered the probability of occurrence for individual condition. Applying the 3rd quantile huff distribution, the peak discharges were overestimated by 5% over the peak discharge that considered the probability of occurrence. The overall results indicated that the effect on the peak flood of Huff distribution was less than AMC and reservoir storage.

A Development of Intelligent Pumping Station Operation System Using Deep Reinforcement Learning (심층 강화학습을 이용한 지능형 빗물펌프장 운영 시스템 개발)

  • Kang, Seung-Ho;Park, Jung-Hyun;Joo, Jin-Gul
    • Convergence Security Journal
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • The rainwater pumping station located near a river prevents river overflow and flood damages by operating several pumps according to the appropriate rules against the reservoir. At the present time, almost all of rainwater pumping stations employ pumping policies based on the simple rules depending only on the water level of reservoir. The ongoing climate change caused by global warming makes it increasingly difficult to predict the amount of rainfall. Therefore, it is difficult to cope with changes in the water level of reservoirs through the simple pumping policy. In this paper, we propose a pump operating method based on deep reinforcement learning which has the ability to select the appropriate number of operating pumps to keep the reservoir to the proper water level using the information of the amount of rainfall, the water volume and current water level of the reservoir. In order to evaluate the performance of the proposed method, the simulations are performed using Storm Water Management Model(SWMM), a dynamic rainfall-runoff-routing simulation model, and the performance of the method is compared with that of a pumping policy being in use in the field.

Efficient Bloom Filter Based Destination Address Monitoring Scheme for DDoS Attack Detection (DDoS 공격 탐지를 위한 확장된 블룸 필터 기반의 효율적인 목적지 주소 모니터링 기법)

  • Yoo, Kyoung-Min;Sim, Sang-Heon;Han, Kyeong-Eun;So, Won-Ho;Kim, Young-Sun;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3B
    • /
    • pp.152-158
    • /
    • 2008
  • Recently, DDoS (Distributed Denial of Service) attack has emerged as one of the major threats and it's main characteristic is to send flood of data packets toward a specific victim. Thus, several attack detection schemes which monitor the destination IP address of packets have been suggested. The existing Bloom Filter based attack detection scheme is simple and can support real-time monitoring. However, since this scheme monitors the separate fields of destination IP address independently, wrong detection is comparatively high. In this paper, in order to solve this drawback, an efficient Bloom Filter based destination address monitoring scheme is proposed, which monitors not only separate fields but also relationship among separate fields. In the results of simulation, the proposed monitoring scheme outperforms the existing Bloom Filter based detection scheme. Also, to improve the correctness of detection, multi-layerd structure is proposed and the correctness of result is improved according to the number of layers and extra tables.

Development of Distributed Rainfall-Runoff Model Using Multi-Directional Flow Allocation and Real-Time Updating Algorithm (II) - Application - (다방향 흐름 분배와 실시간 보정 알고리듬을 이용한 분포형 강우-유출 모형 개발(II) - 적용 -)

  • Kim, Keuk-Soo;Han, Kun-Yeun;Kim, Gwang-Seob
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.3
    • /
    • pp.259-270
    • /
    • 2009
  • The applicability of the developed distributed rainfall runoff model using a multi-directional flow allocation algorithm and a real-time updating algorithm was evaluated. The rainfall runoff processes were simulated for the events of the Andong dam basin and the Namgang dam basin using raingauge network data and weather radar rainfall data, respectively. Model parameters of the basins were estimated using previous storm event then those parameters were applied to a current storm event. The physical propriety of the multi-directional flow allocation algorithm for flow routing was validated by presenting the result of flow grouping for the Andong dam basin. Results demonstrated that the developed model has efficiency of simulation time with maintaining accuracy by applying the multi-directional flow allocation algorithm and it can obtain more accurate results by applying the real-time updating algorithm. In this study, we demonstrated the applicability of a distributed rainfall runoff model for the advanced basin-wide flood management.

Adaptive Routing Scheme to Avoid Clusterhead Congestion in c-DSDV Routing Protocol (c-DSDV 라우팅 프로토콜에서 클러스터헤드의 혼잡 회피를 위한 적응적 라우팅 방법)

  • Oh, Hoon;Yun, Seok-Yeol;Vu, Trong Tuan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.219-224
    • /
    • 2008
  • In the c-DSDV routing protocol proposed to improve the scalability of DSDV, clusterheads manage a routing table that has only clusterheads as potential destinations and flood update request message to its neighbor clusterheads periodically or at the time of topology change. Accordingly, the convergence range of topology change by a single update request message was expanded nine times as wide as that of DSDV, increasing routing correctness; however, c-DSDV suffers from the congestion of clusterheads since data packets always go through clusterheads of the clusters on the routing path. To improve this problem, we propose an adaptive routing scheme that judges if detouring clusterhead is possible on the fly while packets are forwarded. As a result, a routing path length is shortened and an end-to-end delay is improved by the reduced queue length. It shows that the end-to-end delay is reduced by almost 40% through simulation.

A Study on Flooding Prevention Scheme due to Sea Level Rise at Young-do Coast in Busan (부산 영도 해안의 해수면 상승에 따른 침수대책 연구)

  • Hong, Sung-Ki;Kang, Yong-Hoon;Lee, Han-Seok
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.409-418
    • /
    • 2013
  • On the assumption of the rise of sea level, the inundation vulnerabilities on coastal areas of Korea are evaluated in different ways. The propose of this study is to find out the influences of sea level rise caused by global warming at Young-do coastal area, and to suggest the prevention schemes against the flooding damage caused by the sea level rise. The potential rates of sea level rise are assumed and with these rates the inundation vulnerabilities are simulated using CAD program. With the virtual maps, as the results of the previous CAD simulation, this study attempts to suggest the flood prevention schemes for each sector of damage-expected coastal area.

Study on the Decision of Watergate Stage Using Inundation Simulation for Inland (내수침수모의를 통한 배수문 높이결정에 관한 연구)

  • Choo, Tai Ho;Yun, Gwan Seon;Yoon, Hyeon Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1149-1156
    • /
    • 2014
  • In order to reduce flood damages, there should demand an appropriate design such as enlarging a bank, dredging a river bottom, building a hydraulic structure and so on. The installation locations about the Watergate are listed of the seven provisions in the river design standard, but it is not detailed. In order to compute proper place considering landuse and basin characteristics of inlands, internal inundation modeling that should be performed is regarded with quantitative evaluation. Anyway, that is very complex and taking a long time because that has to consider hydraulic and hydrologic characteristics. In the current study, therefore, the simple and convenient method for internal inundation modeling was proposed to overview the Watergate location.

Variability Analysis of Design Flood Considering Uncertainty of Rainfall-Runoff Model and Climate Change (기후변화 영향과 강우-유출 모형의 불확실성을 고려한 설계홍수량 변동성 분석)

  • Kwon, Hyun-Han;Kim, Jang-Gyeong;Lee, Jong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.365-365
    • /
    • 2012
  • 이수 및 치수를 위한 수공구조물 설계 및 하천기본계획 수립의 요점은 설계홍수량의 산정에 있으며, 통계적으로 유의성을 가지는 설계홍수량을 산정하기 위해서는 일반적으로 30년 이상 관측된 홍수자료가 요구된다. 우리나라의 경우 대부분의 유역이 미계측 유역이거나 관측년수가 비교적 작은 경우가 많으므로, 상대적으로 자료 연한이 긴 강우자료를 빈도분석한 후 이를 강우-유출 모형에 입력하여 확률홍수량을 추정하는 간접적인 방법이 주로 이용되며 사용된 강우의 빈도가 홍수의 빈도와 동일하다는 가정을 기본으로 한다. 그러나 동일한 강우량이 발생하더라도 강우의 강도, 지속시간, 유역의 선행함수조건 등과 같은 유역 특성에 따라 유출의 특성은 현저히 다르게 나타나며 결국 이러한 특성은 입력자료, 강우-유출 모형, 기후변동성 등과 같은 불확실성 요소로 인식될 수 있다. 따라서 본 연구에서는 이러한 불확실성을 고려할 수 있는 강우-유출 모의기법을 개발하여 이를 통해 홍수빈도곡선을 유도할 수 있는 방법론을 제시하고자 한다. 불확실성 분석을 위해 기존 HEC-1 강우-유출 모형에서 Bayesian MCMC 기법을 적용하여 매개변수들의 사후분포를 추정하여 매개변수들의 최적화 및 불확실성 분석을 수행하였다. 마지막으로 기후변화 영향을 통합한 홍수빈도곡선을 유도하기 위해서 극치강수를 모의하는 것이 필요하며, 본 연구에서는 극치값 재현에 있어서 우수한 성능을 발휘하는 Kernel-Pareto Piecewise분포 기반의 강우모의발생 기법을 적용하여 HEC-1모형과 연동되도록 모형을 개발하였다. 본 연구에서 제안하는 방법론은 기존 홍수빈도곡선 유도 방법에서 불확실성을 분석하기 위해 모든 변수들을 독립사상으로 간주하고 Monte Carlo Simulation을 수행함으로서 매개변수들간의 상호연관성, 상관성, 조건부 확률들을 고려할 수 없었던 점을 Bayesian 모형을 통해 매개변수들간의 조건부 확률을 고려한 매개변수의 사후분포 도출을 가능하게 하여 보다 현실적인 강우-유출 관계 도출이 가능하고 불확실성 구간이 자연적으로 도출됨으로서 향후, 신뢰성 있는 수자원 계획수립에 유용한 자료로 활용이 가능할 것으로 판단된다.

  • PDF

Future drought assessment in the Nakdong basin in Korea under climate change impacts

  • Kim, Gwang-Seob;Quan, Ngo Van
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.458-458
    • /
    • 2012
  • Climate extreme variability is a major cause of disaster such as flood and drought types occurred in Korea and its effects is also more severe damage in last decades which can be danger mature events in the future. The main aim of this study was to assess the effectives of climate change on drought for an agriculture as Nakdong basin in Korea using climate change data in the future from data of General Circulation Models (GCM) of ECHO-G, with the developing countries like Korea, the developed climate scenario of medium-high greenhouse gas emission was proposed of the SRES A2. The Standardized Precipitation Index (SPI) was applied for drought evaluation. The drought index (SPI) applied for sites in catchment and it is evaluated accordingly by current and future precipitation data, specific as determined for data from nine precipitation stations with data covering the period 1980-2009 for current and three periods 2010-2039, 2040-2069 and 2070-2099 for future; time scales of 3month were used for evaluating. The results determined drought duration, magnitude and spatial extent. The drought in catchment act intensively occurred in March, April, May and November and months of drought extreme often appeared annual in May and November; drought frequent is a non-uniform cyclic pattern in an irregular repetitive manner, but results showed drought intensity increasing in future periods. The results indicated also spatial point of view, the SPI analysis showed two of drought extents; local drought acting on one or more one of sites and entire drought as cover all of site in catchment. In addition, the meteorology drought simulation maps of spatial drought representation were carried out with GIS software to generate for some drought extreme years in study area. The method applied in this study are expected to be appropriately applicable to the evaluation of the effects of extreme hydrologic events, the results also provide useful for the drought warning and sustainable water resources management strategies and policy in agriculture basins.

  • PDF