• Title/Summary/Keyword: flood runoff

Search Result 698, Processing Time 0.239 seconds

Analysis of future flood inundation change in the Tonle Sap basin under a climate change scenario

  • Lee, Dae Eop;Jung, Sung Ho;Yeon, Min Ho;Lee, Gi Ha
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.433-446
    • /
    • 2021
  • In this study, the future flood inundation changes under a climate change were simulated in the Tonle Sap basin in Cambodia, one of the countries with high vulnerability to climate change. For the flood inundation simulation using the rainfall-runoff-inundation (RRI) model, globally available geological data (digital elevation model [DEM]; hydrological data and maps based on Shuttle elevation derivatives [HydroSHED]; land cover: Global land cover facility-moderate resolution imaging spectroradiometer [GLCF-MODIS]), rainfall data (Asian precipitation-highly-resolved observational data integration towards evaluation [APHRODITE]), climate change scenario (HadGEM3-RA), and observational water level (Kratie, Koh Khel, Neak Luong st.) were constructed. The future runoff from the Kratie station, the upper boundary condition of the RRI model, was constructed to be predicted using the long short-term memory (LSTM) model. Based on the results predicted by the LSTM model, a total of 4 cases were selected (representative concentration pathway [RCP] 4.5: 2035, 2075; RCP 8.5: 2051, 2072) with the largest annual average runoff by period and scenario. The results of the analysis of the future flood inundation in the Tonle Sap basin were compared with the results of previous studies. Unlike in the past, when the change in the depth of inundation changed to a range of about 1 to 10 meters during the 1997 - 2005 period, it occurred in a range of about 5 to 9 meters during the future period. The results show that in the future RCP 4.5 and 8.5 scenarios, the variability of discharge is reduced compared to the past and that climate change could change the runoff patterns of the Tonle Sap basin.

Development of an integrated platform for flood analysis in the smart city (스마트시티 홍수분석 연계플랫폼 개발)

  • Koo, Bonhyun;Oh, Seunguk;Koo, Jaseob;Shim, Kyucheoul
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.1
    • /
    • pp.61-69
    • /
    • 2021
  • In this study, in order to efficiently perform smart city river management, we developed an integrated platform that connects flood analysis models on the web and provides information by converting input and output data into a database. In the integrated platform, a watershed analysis model, a river flow analysis model and an urban runoff analysis model were applied to perform flood analysis in smart city. This platform is able to obtain more reliable results by step-by-step approach to urban runoff that may occur in smart city through the applied model. In addition, since all analysis processes such as data collection, input data generation and result storage are performed on the web, anyone in an environment that can access the web without special equipment or tools can perform analysis and view results. Through this, it is expected that smart city managers can efficiently manage urban runoff and nearby rivers, and can also be used as educational materials for urban outflows.

A Study on Evaluation of the Ability to Reduce Stormwater Runoff of Blue-Green Roof for Flood Damage Reduction (홍수피해 저감을 위한 Blue-Green Roof의 강우유출량 저감 능력 평가에 관한 연구)

  • Seung Won Lee;Jihoon Seo;Sung Min Cha
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.30-37
    • /
    • 2023
  • This study aimed to evaluate the ability to reduce flood damage caused by abnormal rainfall events due to climate change by utilizing a blue-green roof (BGF), a type of rooftop greening technology. For two buildings with the same roof area, a BGF was installed in the experimental group, a general roof was configured in the control group, and rainfall runoff was compared. A total of 10 rainfall events were tested and analyzed by classifying them into three rainfall classes (less than 10 mm, less than 100 mm, and more than 100 mm). There was a reduction of 100% in the case of 10 mm or less of rainfall, 84. 7% in the case of 100 mm or less, and 39.8% in the case of 100 mm or more. Although this study showed that a BGF was effective in reducing rainfall runoff, additional experiments and analyses of various factors affecting rainfall runoff reduction are needed to generalize the results of the study. This research methodology may be used to develop a method for evaluating the resilience of a BGF to flood damage due to climate change.

Application of Storage Function Method with SCS Method (SCS 초과우량산정방법을 이용한 저류함수법 적용)

  • Kim, Tae-Gyun;Yoon, Kang-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.449-453
    • /
    • 2007
  • Has been being operated since 1974, recently, the flood forecasting and warning system is applied in almost all the rivers in Korea, and the Storage Function Method(SFM) is used for flood routing. The SFM which was presented by Toshimitsu Kimura(1961) routes floods in channels and basins with the storage function as the basic equation. A watershed is devided into two zone, runoff and percolation area and Runoff is occured when cumulated rainfall is not exceed saturation rainfall, but exceed, runoff is occured from percolation area, too. Runoff area is given and not changed, runoff ratio is constant. In routing process, runoff from runoff and percolation area is routed seperately with nonlinear cenceptual reservior having same characteristics and it is unreasonable assumption. Modified SFM is proposed with storage function and continuity Equation which has no assumption for routing process and effective rainfall is calculated by SCS Method. For Wi Stream, comparision of Kimura and Modified SFM is conducted and It could be seen that Modified SFM is more improvemental and easily applicable method.

  • PDF

Application of the Artificial Neurons Networks Model uses under the condition of insufficient rainfall data for Runoff Forecasting in Thailand

  • Mama, Ruetaitip;Jung, Kwansue;Kim, Minseok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.398-398
    • /
    • 2015
  • To estimate and forecast runoff by using Aritifitial Neaural Networks model (ANNs). it has been studied in Thailand for the past 10 years. The model was developed in order to be conformed with the conditions in which the collected dataset is short and the amount of dataset is inadequate. Every year, the Northerpart of Thailand faces river overflow and flood inundation. The most important basin in this area is Yom basin. The purpose of this study is to forecast runoff at Y.14 gauge station (Si-Satchanalai district, Sukhothai province) for 3 days in advance. This station located at the upstream area of Yom River basin. Daily rainfall and daily runoff from Royal Irrigation Department and Meteorological Department during flood period 2000-2012 were used as input data. In order to check an accuracy of forecasting, forecasted runoff were compared with observed data by pursuing Nash Sutcliffe Efficiency (NSE) and Coefficient of Determination ($R^2$). The result of the first day gets the highest accuracy and then decreased in day 2 and day 3, consequently. NSE and $R^2$ values for frist day of runoff forecasting is 0.76 and 0.776, respectively. On the second day, those values are 0.61 and 0.65, respectively. For the third day, the aforementioned valves are 0.51 and 0.52, respectively. The results confirmed that the ANNs model can be used when the range of collected dataset is short and insufficient. In conclusion, the ANNs model is suitable for applying during flood incident because it is easy to use and does not require numerous parameters for simulating.

  • PDF

Threshold Runoff Computation for Flash flood forecast on Small Catchment Scale (돌발홍수예보를 위한 미소유역의 한계유출량 산정)

  • Kim, Woon-Tae;Bae, Deg-Hyo;Cho, Chun-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.553-561
    • /
    • 2002
  • The objectives of this study are to introduce flash flood forecasting system in Korea and to develop a system for computing threshold runoff on very fine catchment scale. The developed GUI system composed of 9 steps starting from input data preparation to Input file creation for flash flood forecasting compute basin subdivision, hydrologic subbasin characteristics, bankfull flows, unit peak flows and threshold runoffs on about 5 $\textrm{km}^2$ scale. When the developed system was applied on Pyungchang IHP basin, the computed 1-hour threshold runoffs ranged 18.72~81.96mm with average value of 46.39mm. Judging from the comparison of the computed threshold runoffs between this study area and three other basins in United States, the computed results in this study were reasonable. It can be concluded that the developed system on ArcView/Avenue are useful for computing threshold runoff on small catchment and can be used as a component of flash flood forecasting system.

Behaviour Analysis of Irrigation Reservoir Using Open Water Management Program (개방형 물관리 프로그램을 이용한 관개용 저수지의 거동 분석)

  • Kim, Sun-Joo;Kim, Phil-Shik;Lim, Chang-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.3-13
    • /
    • 2004
  • For optimal irrigation reservoir operation during flood and normal period, a general and systematic policy is suggested to make balance of the conflicting purposes between water conservation and flood control. We developed Open Water Management Program (OWMP) with an open architecture to deal with newly arising upgrade problems for optimal management of irrigation reservoir. And we evaluated the applicability of OWMP to estimate daily runoff from an agricultural watershed including irrigation reservoirs, and analyzed behaviour of irrigation reservoirs as irrigation water requirements considering frequency analysis of reservoir storage and frequency analysis water requirements for effective management of reservoir. When we executed OWMP with data produced from an experimental field, IHP basins, the mean relative errors of application of daily runoff and irrigation water requirement were less than 5%. We also applied OWMP to a Seongju irrigation reservoir to simulate daily runoff, storage and water requirement from 1998 to 2002, and the mean model efficiency between measured and simulated value was 0.76. Our results based on the magnitude of relative errors and model efficiency of the model simulation indicate that the OWMP can be a tool nicely adapted to the effective water management of irrigation reservoir for beneficial water use and flood disaster management.

Flood Runoff Simulation using Radar Rainfall and Distributed Hydrologic Model in Un-Gauged Basin : Imjin River Basin (레이더 강우와 분포형 수문모형을 이용한 미계측 유역의 홍수 유출모의: 임진강 유역)

  • Kim, Byung-Sik;Bae, Young-Hye;Park, Jung-Sool;Kim, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.52-67
    • /
    • 2008
  • Recently, frequent occurrence of flash floods caused by climactic change has necessitated prompt and quantitative prediction of precipitation. In particular, the usability of rainfall radar that can carry out real-time observation and prediction of precipitation behavior has increased. Moreover, the use of distributed hydrological model that enables grid level analysis has increased for an efficient use of rainfall radar that provides grid data at 1km resolution. The use of distributed hydrologic model necessitates grid-type spatial data about target basins; to enhance reliability of flood runoff simulation, the use of visible and precise data is necessary. In this paper, physically based $Vflo^{TM}$ model and ModClark, a quasi-distributed hydrological model, were used to carry out flood runoff simulation and comparison of simulation results with data from Imjin River Basin, two-third of which is ungauged. The spatial scope of this study was divided into the whole Imjin River basin area, which includes ungauged area, and Imjin River basin area in South Korea for which relatively accurate and visible data are available. Peak flow and lag time outputs from the two simulations of each region were compared to analyze the impact of uncertainty in topographical parameters and soil parameters on flood runoff simulation and to propose effective methods for flood runoff simulation in ungauged regions.

  • PDF

A Determination of Design Flood for a small Basin by Unit Hydrograph Method (단위유량도법에 의한 소유역의 계획홍수량 결정)

  • 윤용남;침순보
    • Water for future
    • /
    • v.9 no.2
    • /
    • pp.76-86
    • /
    • 1976
  • The 30-year design flood hydrograph for the Musim Representative Basin, one of the study basins of the International Hydrological Program, is synthesized by the method of unit hydrograph. The theory of unit hydrograph has been well known for a long time. However, the synthesis of flood hydrograph by this method for a basin with insufficient hydrologic data is not an easy task and hence, assumptions and engineering judgement must be exercized. In this paper, the problems often encountered in applying the unit hydrograph method are exposed and solved in detail based on the theory and rational judgement. The probability rainfall for Cheonju Station is transposed to the Musim Basin since it has not been analyzed due to short period of rainfall record. The duration of design rainfall was estimated based on the time of concentration for the watershed. The effective rainfall was determined from the design rainfall using the SCS method which is commonly used for a small basin. The spatial distribution of significant storms was expressed as a dimensionless rainfall mass curve and hence, it was possible to determine the hyetograph of effective design storm. To synthesize the direct runoff hydrograph the 15-min. unit hydrograph was derived by the S-Curve method from the 1-hr unit hydrograph which was obtained from the observed rainfall and runoff data, and then it was applied to the design hyetograph. The exsisting maximum groundwater depletion curve was derived by the base flow seperation. Hence, the design flood hydrograph was obtained by superimposing the groundwater depletion curve to the computed direct runoff hydrograph resulting from the design storm.

  • PDF

Comparison of the Rainfall-Runoff Models for Flood Forecasting in Watershed (하천 수계의 홍수 예측을 위한 강우-유출 모형의 비교)

  • 심순보;박노혁
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.237-247
    • /
    • 1996
  • In this study two rainfall-runoff models, the NWS-PC model and the Storage Function Model (SFM), were compared to see their applicability in the flood forecasting at the river system. The SFM has been adopted in the flood-forecasting and warning system for the major rivers in Korea since 1974, and the NWS-PC model, a physically based model, has been developed to simulate soil moisture changing as well as the surface and subsurface flow at the watershed and in the river streams. Case studies were carried out using flood event data observed at the Mihochun watershed in Geum-river basin during 1985 to 1995. Simulated results from both models were compared with the observed data with respect to the RMS errors and relative errors for peak flow discharges and total runoff volumes to show the advantages and disadvantages of both models and to suggest the way to improve their performances.

  • PDF