• Title/Summary/Keyword: flood level reduction

Search Result 52, Processing Time 0.018 seconds

Changes in Hydrological Characteristics of a Forested Watershed of Mt. Palgong (팔공산 산림소유역의 유출 특성 변화)

  • Jung, Yu-Gyeong;Lee, Ki-Hwan;Choi, Hyung-Tae;Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.429-437
    • /
    • 2020
  • In this study we quantified the long-term change in discharge against precipitation in a forested watershed and investigated how the growth of forest trees influences these changes. We found a proportional relationship between precipitation and discharge for each year, and discharge decreased gradually with time. Precipitation and discharge were highest in July and August, and the changes in precipitation, discharge, and runoff rate did not always coincide, given that high runoff rate was shown in August and September. The monthly coefficient of variation (CV) for discharge was larger than that for precipitation, and the deviation between precipitation and discharge increased gradually. From 2011 to 2017, the gradient of the trend line for the change of total discharge and direct runoff against precipitation decreased, whereas the gradient of the base flow increased in this same time period. A possible explanation is that the water holding capacity of soil deposits increased as the forest soil of the Palgong Mountain watershed developed and the increase of base flow rose with groundwater level together with that of outflow quantity. The coefficient of flood recession was lower in the period 2011 to 2017 than in 2003 to 2010; thus, the reduction of discharge was mitigated and remained steady as time progressed. We conclude from these results that the discharge of surface runoff decreased as tree growth and base flow increased; however, the water yield function of the forest increased gradually.

Analysis of Soil Changes in Vegetable LID Facilities (식생형 LID 시설의 내부 토양 변화 분석)

  • Lee, Seungjae;Yoon, Yeo-jin
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.204-212
    • /
    • 2022
  • The LID technique began to be applied in Korea after 2009, and LID facilities are installed and operated for rainwater management in business districts such as the Ministry of Environment, the Ministry of Land, Infrastructure and Transport, and LH Corporation, public institutions, commercial land, housing, parks, and schools. However, looking at domestic cases, the application cases and operation periods are insufficient compared to those outside the country, so appropriate design standards and measures for operation and maintenance are insufficient. In particular, LID facilities constructed using LID techniques need to maintain the environment inside LID facilities because hydrological and environmental effects are expressed by material circulation and energy flow. The LID facility is designed with the treatment capacity planned for the water circulation target, and the proper maintenance, vegetation, and soil conditions are periodically identified, and the efficiency is maintained as much as possible. In other words, the soil created in LID is a very important design element because LID facilities are expected to have effects such as water pollution reduction, flood reduction, water resource acquisition, and temperature reduction while increasing water storage and penetration capacity through water circulation construction. In order to maintain and manage the functions of LID facilities accurately, the current state of the facilities and the cycle of replacement and maintenance should be accurately known through various quantitative data such as soil contamination, snow removal effects, and vegetation criteria. This study was conducted to investigate the current status of LID facilities installed in Korea from 2009 to 2020, and analyze soil changes through the continuity and current status of LID facilities applied over the past 10 years after collecting soil samples from the soil layer. Through analysis of Saturn, organic matter, hardness, water contents, pH, electrical conductivity, and salt, some vegetation-type LID facilities more than 5 to 7 years after construction showed results corresponding to the lower grade of landscape design. Facilities below the lower level can be recognized as a point of time when maintenance is necessary in a state that may cause problems in soil permeability and vegetation growth. Accordingly, it was found that LID facilities should be managed through soil replacement and replacement.