• Title/Summary/Keyword: flood forecast

Search Result 177, Processing Time 0.024 seconds

Development of Decision Support System for Flood Forecasting and Warning in Urban Stream (도시하천의 홍수예·경보를 위한 의사결정지원시스템 개발)

  • Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.743-750
    • /
    • 2008
  • Due to unusual climate change and global warming, drought and flood happen frequently not only in Korea but also in all over the world. It leads to the serious damages and injuries in urban areas as well as rural areas. Since the concentration time is short and the flood flows increase urgently in urban stream basin, the chances of damages become large once heavy storm occurs. A decision support system for flood forecasting and warning in urban stream is developed as an alternative to alleviate the damages from heavy storm. It consists of model base management system based on ANFIS (Adaptive Neuro Fuzzy Inference System), database management system with real time data building capability and user friendly dialog generation and management system. Applying the system to the Tanceon river basin, it can forecast and warn the stream flows from the heavy storm in real time and alleviate the damages.

Real-time flood prediction applying random forest regression model in urban areas (랜덤포레스트 회귀모형을 적용한 도시지역에서의 실시간 침수 예측)

  • Kim, Hyun Il;Lee, Yeon Su;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1119-1130
    • /
    • 2021
  • Urban flooding caused by localized heavy rainfall with unstable climate is constantly occurring, but a system that can predict spatial flood information with weather forecast has not been prepared yet. The worst flood situation in urban area can be occurred with difficulties of structural measures such as river levees, discharge capacity of urban sewage, storage basin of storm water, and pump facilities. However, identifying in advance the spatial flood information can have a decisive effect on minimizing flood damage. Therefore, this study presents a methodology that can predict the urban flood map in real-time by using rainfall data of the Korea Meteorological Administration (KMA), the results of two-dimensional flood analysis and random forest (RF) regression model. The Ujeong district in Ulsan metropolitan city, which the flood is frequently occurred, was selected for the study area. The RF regression model predicted the flood map corresponding to the 50 mm, 80 mm, and 110 mm rainfall events with 6-hours duration. And, the predicted results showed 63%, 80%, and 67% goodness of fit compared to the results of two-dimensional flood analysis model. It is judged that the suggested results of this study can be utilized as basic data for evacuation and response to urban flooding that occurs suddenly.

Real Time Flood Forecasting Using a Grey Model (Grey 모형을 이용한 홍수량 예측)

  • Kang, Min-Goo;Park, Seung-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.535-538
    • /
    • 2003
  • A Grey model was developed to forecast short-term runoff from the Naju watershed in Korea. In calibration, the root mean square error(RMSE) of the simulated runoff of six hours ahead using Grey model ranged from 6.3 to $290.52m^3/s,\;R^2$ ranged from 0.91 to 0.99, compared to the observed data. In verification, the RMSE ranged from 75.7 to $218.9m^3/s,\;R^2$ ranged from 0.87 to 0.96, compared to the observed data. The results in this study demonstrate that the proposed model can reasonably forecast runoff one to six hours ahead.

  • PDF

Monthly rainfall forecast of Bangladesh using autoregressive integrated moving average method

  • Mahmud, Ishtiak;Bari, Sheikh Hefzul;Rahman, M. Tauhid Ur
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.162-168
    • /
    • 2017
  • Rainfall is one of the most important phenomena of the natural system. In Bangladesh, agriculture largely depends on the intensity and variability of rainfall. Therefore, an early indication of possible rainfall can help to solve several problems related to agriculture, climate change and natural hazards like flood and drought. Rainfall forecasting could play a significant role in the planning and management of water resource systems also. In this study, univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was used to forecast monthly rainfall for twelve months lead-time for thirty rainfall stations of Bangladesh. The best SARIMA model was chosen based on the RMSE and normalized BIC criteria. A validation check for each station was performed on residual series. Residuals were found white noise at almost all stations. Besides, lack of fit test and normalized BIC confirms all the models were fitted satisfactorily. The predicted results from the selected models were compared with the observed data to determine prediction precision. We found that selected models predicted monthly rainfall with a reasonable accuracy. Therefore, year-long rainfall can be forecasted using these models.

Flood inflow forecasting on HantanRiver reservoir by using forecasted rainfall (LDAPS 예측 강우를 활용한 한탄강홍수조절댐 홍수 유입량 예측)

  • Yu, Myungsu;Lee, Youngmok;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.327-333
    • /
    • 2016
  • Due to climate changes accelerated by global warming, South Korea has experienced regional climate variations as well as increasing severities and frequencies of extreme weather. The precipitation in South Korea during the summer season in 2013 was concentrated mainly in the central region; the maximum number of rainy days were recorded in the central region while the southern region had the minimum number of rainy days. As a result, much attention has been paid to the importance of flood control due to damage caused by spatiotemporal intensive rainfalls. In this study, forecast rainfall data was used for rapid responses to prevent disasters during flood seasons. For this purpose, the applicability of numerical weather forecast data was analyzed using the ground observation rainfall and inflow rate. Correlation coefficient, maximum rainfall intensity percent error and total rainfall percent error were used for the quantitative comparison of ground observation rainfall data. In addition, correlation coefficient, Nash-Sutcliffe efficiency coefficient, and standardized RMSE were used for the quantitative comparison of inflow rate. As a result of the simulation, the correlation coefficient up to six hours was 0.7 or higher, indicating a high correlation. Furthermore, the Nash-Sutcliffe efficiency coefficient was positive until six hours, confirming the applicability of forecast rainfall.

Research on flood risk forecast method using weather ensemble prediction system in urban region (앙상블 기상예측 자료를 활용한 도시지역의 홍수위험도 예측 방안에 관한 연구)

  • Choi, Youngje;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.753-761
    • /
    • 2019
  • Localized heavy storm is one of the major causes of flood damage in urban regions. According to the recent disaster statistics in South Korea, the frequency of urban flood is increasing more frequently, and the scale is also increasing. However, localized heavy storm is difficult to predict, making it difficult for local government officials to deal with floods. This study aims to construct a Flood risk matrix (FRM) using ensemble weather prediction data and to assess its applicability as a means of reducing damage by securing time for such urban flood response. The FRM is a two-dimensional matrix of potential impacts (X-axis) representing flood risk and likelihood (Y-axis) representing the occurrence probability of dangerous weather events. To this end, a regional FRM was constructed using historical flood damage records and probability precipitation data for basic municipality in Busan and Daegu. Applicability of the regional FRMs was assessed by applying the LENS data of the Korea Meteorological Administration on past heavy rain events. As a result, it was analyzed that the flood risk could be predicted up to 3 days ago, and it would be helpful to reduce the damage by securing the flood response time in practice.

Development of integrated disaster mapping method (I) : expansion and verification of grid-based model (통합 재해지도 작성 기법 개발(I) : 그리드 기반 모형의 확장 및 검증)

  • Park, Jun Hyung;Han, Kun-Yeun;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.71-84
    • /
    • 2022
  • The objective of this study is to develop a two-dimensional (2D) flood model that can perform accurate flood analysis with simple input data. The 2D flood inundation models currently used to create flood forecast maps require complex input data and grid generation tools. This sometimes requires a lot of time and effort for flood modeling, and there may be difficulties in constructing input data depending on the situation. In order to compensate for these shortcomings, in this study, a grid-based model that can derive accurate and rapid flood analysis by reflecting correct topography as simple input data was developed. The calculation efficiency was improved by extending the existing 2×2 sub-grid model to a 5×5. In order to examine the accuracy and applicability of the model, it was applied to the Gamcheon Basin where both urban and river flooding occurred due to Typhoon Rusa. For efficient flood analysis according to user's selection, flood wave propagation patterns, accuracy and execution time according to grid size and number of sub-grids were investigated. The developed model is expected to be highly useful for flood disaster mapping as it can present the results of flooding analysis for various situations, from the flood inundation map showing accurate flooding to the flood risk map showing only approximate flooding.

A Study of Adoption on the Concept of Monthly Probable Maximum Precipitation (월 PMP 개념의 적용에 관한 연구)

  • Choi, Han-Kyu;Kim, Nam-Won;Choi, Yong-Mook;Yoon, Hee-Sub
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.241-248
    • /
    • 2001
  • Normally at a flood season the operation of the dam depends on a short range weather forecast that makes many difficulties of the management at a dry season. It is needed to study the pattern of the long period rainfall. The concept of PMP(Probable Maximum Precipitation) was used for designing dam. From the concept, this study is applied the concept of monthly probable maximum precipitation for operating dam. It can be possible to let us know the appropriateness of a limiting water level at a rainy season. For the operation of dam at a dry season this study can predict roughly the flood season's pattern of precipitation by month or period, therfore the prediction of precipitation can rise efficient operation of a dam.

  • PDF

Real Time Flood Forecasting Using Artificial Neural Networks (인공신경망 이론을 이용한 실시간 홍수량 예측 및 해석)

  • Kang, Moon-Seong;Park, Seung-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.277-280
    • /
    • 2002
  • An artificial neural network model was developed to analyze and forecast real time river runoff from the Naju watershed, in Korea. Model forecasts are very accurate (i.e., relative error is less than 3% and $R^2$ is great than 0.99) for calibration data sets. Increasing the time horizon for validation data sets, thus making the model suitable for flood forecasting, decreases the accuracy of the model. The resulting optimal EBPN models for forecasting real time runoff consists of ten rainfall and four and ten runoff data (ANN0410 and ANN1010 models). Performances of the ANN0410 and ANN1010 models remain satisfactory up to 6 hours (i.e., $R^2$ is great than 0.92).

  • PDF

Water Management Program for Hasa District (하사지구 물관리 프로그램 개발)

  • Go, Gwang-Don;Kwun, Soon-Kuk;Lim, Chang-Young;Kwak, Yeong-Cheol
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.17-20
    • /
    • 2002
  • Hasa TM/TC system is composed of one control center, two reservoirs, six pumping stations and twelve canal systems. For this system we developed water management program which includes flood forecast program, drought reduction program, irrigation scheduling program and database program. With these program we expect that operators can improve the irrigation efficiencies of the irrigation systems due to the timely irrigation on a right place, in a proper quantity and reduce the cost of maintenance and reduce flood and drought damages of the Hasa district. In agricultural engineering respect, the databases including water level, rainfall, the amount of flowing can be useful to the researcher who make a study of hydrology and hydraulics in rural area. Water management program records all of the TM/TC data to MOB format file per 10 minutes.

  • PDF