• Title/Summary/Keyword: flood flow

Search Result 914, Processing Time 0.024 seconds

Estimation of Design Flood Runoff in Ungaged Forest Watershed to Reduce Flood Damage within the National Park (국립공원내 홍수피해 저감을 위한 미계측 산림지역의 설계홍수량 추정)

  • Kim, Sang-Min;Im, Sang-Jun;Lee, Sang-Ho;Kim, Hyung-Ho;Ma, Ho-Seop;Jeong, Won-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.107-113
    • /
    • 2009
  • The purpose of this study is to estimate the design flood runoff for ungaged forest watershed to reduce the flood damage in national park. Daewonsa watershed in Jirisan National Park was selected as study watershed, of which characteristic factors were obtained from GIS data. Flood runoff was simulated using SCS unit hydrograph module in HEC-HMS model. SCS Curve Number (CN) was calculated from forest type area weighted average method. Huff's time distribution of second-quartile storm of the Sancheong weather station, which is nearest from study watershed, was used for design flood runoff estimation. Critical storm duration for the study watershed was 3 hrs. Based on the critical duration, the peak runoff for each sub-watershed were simulated. It is recommended to monitor the long-term flow data for major stream stations in National Park for a better reliable peak runoff simulation results.

DEVELOPMENT OF A FLOOD PROTECTION SYSTEM BY THE USE OF MODEL TESTS

  • Knoblauch Helmut;Goekler Gottfried;Heigerth Guenther
    • Water Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.45-55
    • /
    • 2002
  • The Szentgotthard Flood Protection Project is located in the southeasters part of Austria, very close to the Hungarian border and to the Hungarian town of Szentgotthard situated near the Junction of the rivers Lafnitz and Raab. During heavy rainstorms, this area has always been liable to severe floodings, affecting the town itself and upstream reaches, where major industrial and commercial development is planned. In order to solve these problems, several solutions have been developed by means of a series of model tests performed at the hydraulic laboratory of the Technical University of Graz, Austria. The model was constructed to scales 1:75 (lengths) and 1:25 (heights). This trebled scale allowed greater accuracy in the measurement of discharge depths. The results from the model tests have led to the following proposals: - Construction of a flood relief trough with an inflow section 3.5 km upstream of the junction of the rivers Lafnitz and Raab. - Use of a former river bed for the flood relief trough. - Design of a lowered embankment crest section to pass one-third of the maximum flood flow of the river Lafnitz. - Connection of the flood relief trough to the Lahnbach stream, a tributary of the river Raab.

  • PDF

Analysis of Flood Control Effects of Heightening of Agricultural Reservoir Dam (농업용 저수지 증고에 따른 홍수조절효과 분석)

  • Lee, Gwan Jae;Park, Ki Wook;Jung, Young Hun;Jung, In Kyun;Jung, Kwang Wook;Jeon, Ji Hong;Lee, Ji Min;Lim, Kyoung Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.83-93
    • /
    • 2013
  • Annual average precipitation of Korea is 1,277 mm and around 2/3 of annual precipitation and 74 % of available water resources occurred during monsoon period. In recent years, many agricultural reservoirs have been heightened to increase flood control capacity, reduce flooding damage at downstream areas, and provide sustainable environmental flow during drought period. Thus in this study, the flood control effects of heightening of reservoir banks were simulated with HEC-ResSim and HEC-RAS models. These modes were applied to Bonghak reservoir and it was found that flood control effects were 3~4.5 % with 7 -m heightening. Also, with proper operation (1 m lower of full water level) of reservoir right before the monsoon period, flooding at downstream could be prevented even with design storm of 80 -year recurrence interval. As shown in this study, heightening of agricultural reservoir provides positive effects in flood control and flood damage reduction.

Nonlinear runoff during extreme storms in the Seolma-Cheon watershed

  • Kjeldsen, Thomas Rodding;Kim, Hyeonjun;Jang, Cheolhee;Lee, Hyosang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.235-235
    • /
    • 2015
  • This study investigates the impact of event characteristics on runoff dynamics during extreme flood events observed in a $8.5km^2$ experimental watershed located in South Korea. The 37 most extreme flood events with event rainfall in excess of 50 mm were analysed using an event-based rainfall-runoff model; the Revitalised Flood Hydrograph (ReFH) routinely used for design flood estimation in the United Kingdom. The ReFH model was fitted to each event in turn, and links were investigated between each of the two model parameters controlling runoff production and response time, respectively, and event characteristics such as rainfall depth, duration, intensity and also antecedent soil moisture. The results show that the structure of the ReFH model can effectively accommodate any nonlinearity in runoff production, but that the linear unit hydrograph fails to adequately represent a reduction in watershed response time observed for the more extreme events. By linking the unit hydrograph shape directly to rainfall depth, the consequence of the observed nonlinearity in response time is to increase design peak flow by between 50% for a 10 year return period, and up to 80% when considering the probable maximum flood (PMF).

  • PDF

The Statistical Model for Predicting Flood Frequency

  • Noh, Jae-Sik;Lee, Kil-Choon
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.51-63
    • /
    • 1993
  • This study is to verify the applicability of statistical models in predicting flood frequency at the stage gaging stations of which the flow is under natural condition in the Han River basin. The results of the study show that the statistical flood frequency models were proven to be fairly reasonable to apply in practice, and also were compared with sampling variance to calibrate the statistical efficiency of the estimators of the T year floods Q(T) by two different flood frequency models. As a result, it was showed that for return periods greater than about T = 10 years the annual exceedance series estimators of Q(T) has smaller sampling variance than the annual maximum series estimators. It was showed that for the range of return periods the partial duration series estimators of !(T) has smaller sampling variance than the annual maximum series estimate only if the POT model contains at least 2N(N : record length) items or more in order to estimate Q(T) more efficiently than the ANNMAX model.

  • PDF

A study on the flood control of the Mekong Delta (메콩강하구의 홍수조절)

  • 최병습
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.299-304
    • /
    • 1998
  • Flood control of the Mekong delta should be developed over time for rural as well as urban areas. The hydraulic modelling effort is aimed an investigating flow distribution and water level. For the flood control study the flood model made with the VRSAP program is used. Concerning future improvement of the models it is recommended to improve the quality of water level and discharge, extend the number of the measuring locations needed for input for the models, systematically review and analyze future measurement campaigns in order to obtain better understanding of the complex hydraulic aspects, verify and update the topographical data used to model the rivers and cannals, carry out detailed calibration and verification of the models on water levels, discharges etc.

  • PDF

Development of Real-Time Forecasting and Management System for the Youngsan Estuary Dam (영산강 하구둑 실시간 홍수예보 및 관리시스템 개발)

  • Kang, Min-Goo;Park, Seung-Woo;Her, Young-Gu;Park, Chang-Eun;Kang, Moon-Sung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.285-288
    • /
    • 2002
  • For real-time flood forecasting and effective control flood at the Youngsan estuary dam, the Flood Forecasting and Control User Interface System II (FFCUS II) has been developed. This paper describes the features and application of FFCUS II. FFCUS II is composed of the database management subsystem, the model subsystem, and the graphic user interface. The database management subsyem collects rainfall data and stream flow data, updates, processes, and searches the data. The model subsystem predicts the inflow hydrograph, the tide, forecasts flood hydrograph, and simulates the release rate from the sluice gates. The graphic user interface subsystem aids the user's decision-making process by displaying the operation results of the database management subsystem and model subsystem.

  • PDF

A Comparative Study of Linear-Nonlinear Flood Runoff Models. (선형-비선형 홍수유출모델의 비교연구)

  • 이순택;이영화
    • Water for future
    • /
    • v.19 no.3
    • /
    • pp.267-276
    • /
    • 1986
  • This study aims at the development of flood runoff model by comparing and analyzing nonlinear models with linear models in rier basins. The models which are used at the analysis are Nash model and Runoff function method as linear models, and Tank model and Storage function method as nonlinear models. The results, which are obtained from the analysis of these models by using hydrologic data of a representative basin in Nakdong river, Wi-chun basin, show that the peak time, peak flow and flood hydrogrphs by nonlinear models are better than those by linear models in comparison with observed ones, and that nonlinear models are suittable as flood runoff model.

  • PDF

Development of the wet and dry treatment using quadtree grids (사면구조 격자를 이용한 이동경계 기법 개발)

  • Kim, Jong-Ho;Lee, Seung-Oh;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.183-186
    • /
    • 2008
  • All measures to cope with flooding rely on flood predictions to some extent, and the effectiveness of these measures is dependent on the quality of flood predictions. It is important to track properly the movements of the river-bankline in numerical modeling because the location of it varies continuously in the flood inundation. In this study, the wet and dry treatment is used to describe the moving river-bankline accurately (Cho, 1996). An oscillatory flow motion in a parabolic basin is used to validate the performance of the developed model based on quadtree grids. As a result of a simulation, a reasonable agreement is observed with analytical and Cho's results.

  • PDF

Study on the Flow Characteristics at Natural Curved Channel by 2D and 3D Models (2·3차원 모형을 이용한 자연하도 만곡부에서의 흐름특성 연구)

  • Ahn, Seung-Seop;Jung, Do-Joon;Lee, Sang-Il;Kim, Wi-Seok
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.471-478
    • /
    • 2012
  • In this study, the flow characteristic analysis at the curved-channel of the actual channel section is compared and reviewed using the 2D RMA-2 model and the 3D FLOW-3D model. the curve section with curve rate 1.044 in the research section is analyzed applying the frequency of he project flood of 100 years. According to the result, the issue for the application of the FLOW-3D Model's three-dimensional numeric analysis result to the actual river is found to be reviewed with caution. Also, application of the 3D model to the wide basin's flood characteristic is determined to be somewhat risky. But, the applicability to the hydraulic property analysis of a partial channel section and the impact analysis and forecast of hydraulic structure is presumed to be high. In addition, if the parameters to reflect the vegetation of basin and the actual channel, more accurate topological measurement data and the topological data with high closeness to the current status are provided, the result with higher reliability is considered to be drawn.