• Title/Summary/Keyword: flood elevation

Search Result 188, Processing Time 0.021 seconds

Estimation or Threshold Runoff on Han River Watershed (한강유역 한강유출량 산정)

  • Kim, Jin-Hoon;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.2 s.163
    • /
    • pp.151-160
    • /
    • 2006
  • In this study, threshold runoff which is a hydrologic component of flash flood guidance(FFG) is estimated by using Manning's bankfull flow and Geomorphoclimatic Instantaneous Unit Hydrograph(GcIUH) methods on Han River watershed. Geographic Information System(GIS) and 3' Digital Elevation Model database have been used to prepare the basin parameters of a very fine drainage area($1.02\~56.41km^2$), stream length and stream slope for threshold runoff computation. Also, cross-sectional data of basin and stream channel are collected for a statistical analysis of regional regression relationships and then those are used to estimate the stream parameters. The estimated threshold runoff values are ranged from 2 mm/h to 14 mm/6hr on Han River headwater basin with the 1-hour duration values are$97\%$ up to 8mm and the 6-hour values are $98\%$ up to 14mm. The sensitivity analysis shows that threshold runoff is more variative to the stream channel cross-sectional factors such as a stream slope, top width and friction slope than the drainage area. In comparisons between the computed threshold runoffs on this study area and the three other regions in the United States, the computed results on Han River watershed are reasonable.

Combined 1D/2D Inundation Simulation of Riverside Farmland using HEC-RAS (HEC-RAS를 이용한 하천변 농경지의 1, 2차원 연계 침수 모의)

  • Jun, Sang Min;Song, Jung-Hun;Choi, Soon-Kun;Lee, Kyung-Do;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.135-147
    • /
    • 2018
  • The objective of this study was to analyze the characteristics of combined 1D/2D inundation simulation of riverside farmland using the Hydrologic Engineering Center - River Analysis System (HEC-RAS). We compared and analyzed inundation simulation results between 1D and combined 1D/2D hydraulic simulation using HEC-RAS. Calibration and validation of stream stage were performed using three rainfall events. The coefficient of determination ($R^2$) and root mean square error (RMSE) between simulated and observed stream stage were 0.935 - 0.957 and 0.250 m - 0.283 m in calibration and validation, respectively. The inundation area showed no significant difference in 1D and combined 1D/2D simulation ($8.48km^2$ in 1D simulation, $8.75km^2$ in combined 1D/2D simulation). The average inundation depth by 1D simulation was 1.4 m deeper than combined 1D/2D simulation. In the lower inundation depth, the inundation area by combined 1D/2D simulation was larger than inundation area by 1D simulation. As the inundation depth increased, the inundation area by 1D simulation became wider. In the case of the 1D/2D combined simulation, low elevation areas along the river bank were inundated widely. Compared to 1D/2D combined simulation, the flood radius in some sections was longer in 1D simulation. In the 1D analysis, because the low altitude riverside farmlands are also assumed to stream, it is calculated that riverside farmlands have the same stage as the mainstream when the stream is overflowed. Therefore, the inundation area seems to be overestimated in those sections. In other regions, the inundation areas tend to be broken depending on overflow by each stream cross-section. In the case of river flooding, the overflow is expected to flow to the lower area depending on the terrain, such as the results of the combined 1D/2D simulation. It is concluded that the results of combined 1D/2D inundation simulation reflected the topographical characteristics of low-lying farmland.

Enhancement of FLDWAV Model for Its Application to the Main Reach of the Han River (한강 본류에의 적용을 위한 FLDWAV 모형의 개선)

  • Jun, Kyung-Soo;Kim, Jin-Soo;Lee, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.2 s.175
    • /
    • pp.135-146
    • /
    • 2007
  • FLDWAV model was modified such that it can adequately simulate the effect of Jamsil and Singok submerged weirs in the main reach of the Han River. The enhanced model combines weir-type discharge equations for overflow at fixed weir and Manning equation for fluvial-type flow at the movable weir. Equations for weir overflow include those for submerged weir flow and free overflow. Gates of the movable weir may be open or closed for the simulation. In order to test the simulation capabilities, the enhanced model was applied for various flow conditions at submerged weirs. Backwater effect due to Jamsil and Singok submerged weirs were well simulated. Simulations were carried out for spring and neap tides extracted from artificial tide generated by combining $M_2\;and\;S_2$ tidal constituents. Simulation results cleared indicated that tidal effect extends further upstream as the flood discharge decreases. Low flow simulation capabilities of the enhanced model was tested. Discontinuities of water surface elevation due to the submerged weirs were successively simulated.

GIS-based Disaster Management System for a Private Insurance Company in Case of Typhoons(I) (지리정보기반의 재해 관리시스템 구축(I) -민간 보험사의 사례, 태풍의 경우-)

  • Chang Eun-Mi
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.1 s.112
    • /
    • pp.106-120
    • /
    • 2006
  • Natural or man-made disaster has been expected to be one of the potential themes that can integrate human geography and physical geography. Typhoons like Rusa and Maemi caused great loss to insurance companies as well as public sectors. We have implemented a natural disaster management system for a private insurance company to produce better estimation of hazards from high wind as well as calculate vulnerability of damage. Climatic gauge sites and addresses of contract's objects were geo-coded and the pressure values along all the typhoon tracks were vectorized into line objects. National GIS topog raphic maps with scale of 1: 5,000 were updated into base maps and digital elevation model with 30 meter space and land cover maps were used for reflecting roughness of land to wind velocity. All the data are converted to grid coverage with $1km{\times}1km$. Vulnerability curve of Munich Re was ad opted, and preprocessor and postprocessor of wind velocity model was implemented. Overlapping the location of contracts on the grid value coverage can show the relative risk, with given scenario. The wind velocities calculated by the model were compared with observed value (average $R^2=0.68$). The calibration of wind speed models was done by dropping two climatic gauge data, which enhanced $R^2$ values. The comparison of calculated loss with actual historical loss of the insurance company showed both underestimation and overestimation. This system enables the company to have quantitative data for optimizing the re-insurance ratio, to have a plan to allocate enterprise resources and to upgrade the international creditability of the company. A flood model, storm surge model and flash flood model are being added, at last, combined disaster vulnerability will be calculated for a total disaster management system.

Channel Changes and Effect of Flow Pulses on Hydraulic Geometry Downstream of the Hapcheon Dam (합천댐 하류 하천지형 변화 예측 및 흐름파가 수리기하 변화에 미치는 영향)

  • Shin, Young-Ho;Julien, Pierre Y.
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.579-589
    • /
    • 2009
  • Hwang River in South Korea, has experienced channel adjustments due to dam construction. Hapcheon main dam and re-regulation dam. The reach below the re-regulation dam (45 km long) changed in flow regime, channel width, bed material distribution, vegetation expansion, and island formation after dam construction. The re-regulation dam dramatically reduced annual peak flow from 654.7 $m^3$/s to 126.3 $m^3$/s and trapped the annual 591 thousand $m^3$ of sediment load formerly delivered from the upper watershed since the completion of the dam in 1989. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that non-vegetated active channel width narrowed an average of 152 m (47% of 1982) and non-vegetated active channel area decreased an average of 6.6 km2 (44% of 1982) between 1982 and 2004, with most narrowing and decreasing occurring after dam construction. The effects of daily pulses of water from peak hydropower generation and sudden sluice gate operations are investigated downstream of Hapcheon Dam in South Korea. The study reach is 45 km long from the Hapcheon re-regulation Dam to the confluence with the Nakdong River. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that the non-vegetated active channel width narrowed an average of 152 m (47% reduction since 1982). The non-vegetated active channel area also decreased an average of 6.6 $km^2$ (44% reduction since 1982) between 1982 and 2004, with most changes occurring after dam construction. The average median bed material size increased from 1.07 mm in 1983 to 5.72 mm in 2003, and the bed slope of the reach decreased from 0.000943 in 1983 to 0.000847 in 2003. The riverbed vertical degradation is approximately 2.6 m for a distance of 20 km below the re-regulation dam. It is expected from the result of the unsteady sediment transport numerical model (GSTAR-1D) steady simulations that the thalweg elevation will reach a stable condition around 2020. The model also confirms the theoretical prediction that sediment transport rates from daily pulses and flood peaks are 21 % and 15 % higher than their respective averages.

Flow Characteristics and Riverbed Change Simulation on Bridge-intensive Section (교량밀집 구간의 흐름특성과 하상변동 모의)

  • Cho, Hong Je;Jeon, Woo Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.589-598
    • /
    • 2010
  • When the hydraulic structures, such as bridge and weir, are consecutively installed to a short section of a river with complicated cross section, analyzing the flow characteristics and the riverbed change modality of the river is very important. In the 250 m section of the Taehwa river near the Samho-bridge, which passes through Ulsan city, three bridges has been installed, and the tributary water is flowing into both up and downstream of the section. Due to these factors, when the flood occurs, the cross section of the river changes vastly by the water level change and scour. Even so, due to the fact that the Samho-bridge divides the section into two parts, the national river and the regional river, each part is being analyzed separately by the onedimensional model. In this study, the flow characteristics due to the bridge concentration and the tributary water inflow were jointly analyzed for both up and downstream by using the one-dimensional HEC-RAS model and the two-dimensional SMS model, such as RMA2. The riverbed change modality of the section was also investigated by using the SED2D model. The results showed that the water level difference between the HEC-RAS and RMA2 was 0.87 m when applied to the three consecutive bridges. The riverbed change simulation using SED2D showed that the maximum scour was 0.231 m and it occurred at the Samho-bridge, which located in the middle and has short pier distance. In conclusion, when planning the river maintenance for the regions with concentrated bridges or the sections with severe changes in cross-section and flow, estimating the flood elevation by two-dimensional model and establishing countermeasures for the scouring of the bridge are required. In addition, an integrated analysis on both the national river and the regional river is necessary.

A Study on a Calculation Method of Economical Intake Water Depth in the Design of Head Works (취입모의 경제적 계획취입수심 산정방법에 대한 연구)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4592-4598
    • /
    • 1978
  • The purpose of this research is to find out mathemetically an economical intake water depth in the design of head works through the derivation of some formulas. For the performance of the purpose the following formulas were found out for the design intake water depth in each flow type of intake sluice, such as overflow type and orifice type. (1) The conditional equations of !he economical intake water depth in .case that weir body is placed on permeable soil layer ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } { Cp}_{3 }L(0.67 SQRT { q} -0.61) { ( { d}_{0 }+ { h}_{1 }+ { h}_{0 } )}^{- { 1} over {2 } }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { dcp}_{3 }L+ { nkp}_{5 }+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ] =0}}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } C { p}_{3 }L(0.67 SQRT { q} -0.61)}}}} {{{{ { ({d }_{0 }+ { h}_{1 }+ { h}_{0 } )}^{ - { 1} over {2 } }- { { 3Q}_{1 } { p}_{ 6} { { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{ 2}m' SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L }}}} {{{{+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 } L+dC { p}_{4 }L+(2 { z}_{0 }+m )(1-s) { L}_{d } { p}_{7 }]=0 }}}} where, z=outer slope of weir body (value of cotangent), h1=intake water depth (m), L=total length of weir (m), C=Bligh's creep ratio, q=flood discharge overflowing weir crest per unit length of weir (m3/sec/m), d0=average height to intake sill elevation in weir (m), h0=freeboard of weir (m), Q1=design irrigation requirements (m3/sec), m1=coefficient of head loss (0.9∼0.95) s=(h1-h2)/h1, h2=flow water depth outside intake sluice gate (m), b=width of weir crest (m), r=specific weight of weir materials, d=depth of cutting along seepage length under the weir (m), n=number of side contraction, k=coefficient of side contraction loss (0.02∼0.04), m2=coefficient of discharge (0.7∼0.9) m'=h0/h1, h0=open height of gate (m), p1 and p4=unit price of weir body and of excavation of weir site, respectively (won/㎥), p2 and p3=unit price of construction form and of revetment for protection of downstream riverbed, respectively (won/㎡), p5 and p6=average cost per unit width of intake sluice including cost of intake canal having the same one as width of the sluice in case of overflow type and orifice type respectively (won/m), zo : inner slope of section area in intake canal from its beginning point to its changing point to ordinary flow section, m: coefficient concerning the mean width of intak canal site,a : freeboard of intake canal. (2) The conditional equations of the economical intake water depth in case that weir body is built on the foundation of rock bed ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { nkp}_{5 }}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0 }}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{6 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{2 }m' SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0}}}} The construction cost of weir cut-off and revetment on outside slope of leeve, and the damages suffered from inundation in upstream area were not included in the process of deriving the above conditional equations, but it is true that magnitude of intake water depth influences somewhat on the cost and damages. Therefore, in applying the above equations the fact that should not be over looked is that the design value of intake water depth to be adopted should not be more largely determined than the value of h1 satisfying the above formulas.

  • PDF

Validation of Extreme Rainfall Estimation in an Urban Area derived from Satellite Data : A Case Study on the Heavy Rainfall Event in July, 2011 (위성 자료를 이용한 도시지역 극치강우 모니터링: 2011년 7월 집중호우를 중심으로)

  • Yoon, Sun-Kwon;Park, Kyung-Won;Kim, Jong Pil;Jung, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.371-384
    • /
    • 2014
  • This study developed a new algorithm of extreme rainfall extraction based on the Communication, Ocean and Meteorological Satellite (COMS) and the Tropical Rainfall Measurement Mission (TRMM) Satellite image data and evaluated its applicability for the heavy rainfall event in July-2011 in Seoul, South Korea. The power-series-regression-based Z-R relationship was employed for taking into account for empirical relationships between TRMM/PR, TRMM/VIRS, COMS, and Automatic Weather System(AWS) at each elevation. The estimated Z-R relationship ($Z=303R^{0.72}$) agreed well with observation from AWS (correlation coefficient=0.57). The estimated 10-minute rainfall intensities from the COMS satellite using the Z-R relationship generated underestimated rainfall intensities. For a small rainfall event the Z-R relationship tended to overestimated rainfall intensities. However, the overall patterns of estimated rainfall were very comparable with the observed data. The correlation coefficients and the Root Mean Square Error (RMSE) of 10-minute rainfall series from COMS and AWS gave 0.517, and 3.146, respectively. In addition, the averaged error value of the spatial correlation matrix ranged from -0.530 to -0.228, indicating negative correlation. To reduce the error by extreme rainfall estimation using satellite datasets it is required to take into more extreme factors and improve the algorithm through further study. This study showed the potential utility of multi-geostationary satellite data for building up sub-daily rainfall and establishing the real-time flood alert system in ungauged watersheds.