• Title/Summary/Keyword: flood discharge

Search Result 656, Processing Time 0.029 seconds

A Function and Weight Selection of Ecosystem Service Function for the Eco-friendly Protected Horticulture Complex in Agricultural Landscape (시설원예단지의 친환경적 조성을 위한 생태계서비스 기능 및 가중치 산정)

  • SON, Jinkwan;KONG, Minjae;SHIN, Yukung;YUN, Sungwook;KANG, Donghyeon;Park, Minjung;LEE, Siyoung
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.533-541
    • /
    • 2017
  • Agricultural landscape has many ecosystem service functions. However, the development of the horticulture complex has no consideration for environmental conservation. Therefore, we analyzed the priorities of ecosystem service functions required for the composition. The study was conducted in three stages. As a result of the first survey, 17 functions were selected to be improved. In the second survey, 12 functions were selected excluding 5 functions. Finally, 1. Measures for water purification, 2. Groundwater recharge plan, 3. Surface water storage space, 4. Flood control measures, 5. Vegetation diversity space, 6. Carbon emission reduction plan, 7. Aquatic insect habitat space, 8. Amphibian reptiles 9. Landscape and Waste Management, 10. Bird Species Space, 11. Heat Island Mitigation Plan, 12. Experience / Ecological Education Plan. We proposed the structure, capacity, flow rate, arrangement and form of the water treatment facility to improve water quality by improving the function. We proposed a reservoir space of 7-10% for groundwater recharge. The development of reservoir and storage facilities suitable for the Korean situation is suggested for the surface water storage and flood control measures. And proposed to secure a green space for the climate cycle. Proposed habitat and nutrient discharge management for biodiversity. We propose green area development and wetland development to improve the landscape, and put into the facilities for experiential education. The results of the research can be utilized for the development and improvement of the horticultural complex.

Development and Performance Assessment of the Nakdong River Real-Time Runoff Analysis System Using Distributed Model and Cloud Service (분포형 모형과 클라우드 서비스를 이용한 낙동강 실시간 유출해석시스템 개발 및 성능평가)

  • KIM, Gil-Ho;CHOI, Yun-Seok;WON, Young-Jin;KIM, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.12-26
    • /
    • 2017
  • The objective of this study was to develop a runoff analysis system of the Nakdong River watershed using the GRM (Grid-based Rainfall-runoff Model), a physically-based distributed rainfall-runoff model, and to assess the system run time performance according to Microsoft Azure VM (Virtual Machine) settings. Nakdong River watershed was divided into 20 sub-watersheds, and GRM model was constructed for each subwatershed. Runoff analysis of each watershed was calculated in separated CPU process that maintained the upstream and downstream topology. MoLIT (Ministry of Land, Infrastructure and Transport) real-time radar rainfall and dam discharge data were applied to the analysis. Runoff analysis system was run in Azure environment, and simulation results were displayed through web page. Based on this study, the Nakdong River real-time runoff analysis system, which consisted of a real-time data server, calculation node (Azure), and user PC, could be developed. The system performance was more dependent on the CPU than RAM. Disk I/O and calculation bottlenecks could be resolved by distributing disk I/O and calculation processes, respectively, and simulation runtime could thereby be decreased. The study results could be referenced to construct a large watershed runoff analysis system using a distributed model with high resolution spatial and hydrological data.

Characteristics of Pollutant Load from a Dam Reservoir Watershed - Case study on Seomjinkang Dam Reservoir - (댐저수지 유역의 오염부하 유출특성 - 섬진강댐 저수지를 중심으로 -)

  • Lee, Yo-Sang;Gang, Byeong-Su
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.757-764
    • /
    • 2000
  • The investigation of water quality was performed at the upstream of Seomjinkang dam reservoir for the examination of pollutant load characteristics of the reservoir watershed during flood and normal flow periods. The highest water quality concentration was occurred at Y ongsan during normal flow period where it has been more polluted by population and livestock than other sites. Pollutant load varied depending on the sampling site, rainfall intensity and antecedent precipitation during the rainy period. Based on the water quality data measured from 1998 to 1999, the average concentration during rainy period was much higher than that of non~rainy period: BOD was 1.2~1.4 times, COD 1.2~1.7 times, SS 2.6~5.4 times, T-N 2.3~3.0 times, and T-P 2.4~7.5 times respectively. When the pollutant load measured during 7 different rainy periods in 1999 was compared with total pollutant load in 1999, the BOD and COD load measured during the 7 different rainy periods were 28% that is about 1.6 times as high as those of 1999. On the other hand, the rainfall amount measured during the 7 different rainy periods was about 17.5% of total rainfall amount in 1999. The total pollutant load of TN and TP measured during the 7 different rainy periods was almost 50% of total TN and TP loads in 1999. In case of SS, it was 72.8%. It was concluded that the inflow of pollutants into the lake during the rainy period held a high portion of total inflow in 1999. It was suggested that long~term water quality monitoring be performed to better quantity pollutant load to the lake especially during rainy periods.eriods.

  • PDF

A Study on Flood Discharge Capacity and Hydraulic Characteristic of Labyrinth Weir as a Side-Channel Spillway (래버린스 웨어를 적용한 측수로형 여수로의 홍수배제능력 및 수리학적 특성 연구)

  • Park, Sae-Hoon;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.1
    • /
    • pp.65-74
    • /
    • 2008
  • The small and medium sized dams have the fill dam type of a lot of occasions, which are often weak in cases of major floods. For this reason, although a countermeasure is in great need, due to the importance of the facilities and financial situations, no direct safety measures have been taken. In this study, in order to minimize construction expenditure for practical safety measures in cases of major floods, the overflow section of spillway has been analyzed focusing on how the overflow capacity will increase in the case of partially rebuilding a part of the overflow section of spillway favorable for hydraulic conditions. The Labyrinth weir and movable weir was chosen for reconstruction models of the overflow section. Moreover, for analyzing the after-effects of the reconstruction, a small scale dam was temporarily chosen for various experiments such as the hydraulic model testing and the three dimension numerical evaluation through the use of Flow-3D.

Development and Application of Diffusion Wave-based Distributed Runoff Model (확산파에 기초한 분포형 유출모형의 개발 및 적용)

  • Lee, Min-Ho;Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.553-563
    • /
    • 2011
  • According to the improvement of computer's performance, the development of Geographic Information System (GIS), and the activation of offering information, a distributed model for analyzing runoff has been studied a lot in recently years. The distribution model is a theoretical and physical model computing runoff as making target basin subdivided parted. In the distributed model developed by this study, the volume of runoff at the surface flow is calculated on the basis of the parameter determined by landcover data and a two-dimensional diffusion wave equation. Most of existing runoff models compute velocity and discharge of flow by applying Manning-Strickler's mean velocity equation and Manning's roughness coefficient. Manning's roughness coefficient is not matched with dimension and ambiguous at computation; Nevertheless, it is widely used in because of its convenience for use. In order to improve those problems, this study developed the runoff model by applying not only Manning-Strickler's equation but also Chezy's mean velocity equation. Furthermore, this study introduced a power law of exponential friction factor expressed by the function of roughness height. The distributed model developed in this study is applied to 6 events of fan-shape basin, oblong shape test basin and Anseongcheon basin as real field conditions. As a result the model is found to be excellent in comparison with the exiting runoff models using for practical engineering application.

An analysis on stability of riprap considering hydraulic characteristics of flow around joint revetment (연결호안 주변 흐름의 수리적 특성을 고려한 사석호안의 안정성 분석)

  • Kim, Sooyoung;Kim, Hyung-Jun;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.1035-1044
    • /
    • 2016
  • In joint portions of the levee and the barrier, complex 3-dimensional flow was generated and collapse of revetment occurred frequently. For these reasons, it is necessary to install the joint revetment with greater stability as compared with the general revetment at the joint portions. However, design criteria for joint revetment was not presented in River Design Criteria (KWRA, 2009). Therefore it is necessary to research for engineering design of the joint revetment. In this study, hydraulic experiments were performed under various flow conditions in order to realize the collapse conditions of riprap and carried out in 20.0 m straight open channel with one side levee and the width was 4.0 m. The diameter of riprap covered around joint revetment was 0.03 m and the inlet discharges were $0.5{\sim}0.8m^3/s$. The numerical simulations were performed under same conditions with experiment. as results of this numerical simulations, the influence range was confirmed from the distribution of flow characteristics and shear stress. As a result, the riprap diameter of the joint revetment was calculated from 4.1 to 6.9 times greater than that of general revetment. As the inlet discharge was large, the range of vulnerable area was developed long in the downstream direction despite of same withdrawal velocity of riprap. Through this study, the methods of calculating the riprap diameter and influence range were proposed according to hydraulic characteristics of flow around joint revetment. At a later study, if additional experiments about effect of flood plane and various types of barrier is applied, it is expected that rational design method with stability of joint revetment can be proposed.

Analysis of Non-Point Source Pollution Discharge Characteristics in Leisure Facilities Areas for Pattern Classification (패턴분류를 위한 위락시설지역의 비점오염원 유출특성분석)

  • Kim, Yong-Gu;Jin, Young-Hoon;Park, Sung-Chun;Kim, Jung-Min
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1029-1038
    • /
    • 2010
  • In meteorology Korea has 2/3 of rain of annual total rainfall at the month of Jun through Sept and it has possibility to have serious flood damage because geographically it is composed of mountainous area with steep slope which account for 70% of its country. Also, the increase of impervious layer due to industrialization and urbanization causes direct runoff, which deteriorates contamination of rivers by moving the contaminated material on the surface at the beginning of rain. In particular, the area of leisure facilities needs the management of water quality absolutely because dense population requires space of park function and place to relax and increases moving capability of non-point pollution source. For disposition of rainfall & runoff, the standard of initial rainfall, which is to be used for the computation of disposition volume, is significant factors for the runoff study of non-point pollution source, Until now, a great deal of study has been done by many researchers. However, it is the current reality that the characteristics of runoff varies according to land protection comprising river basin and the standard of initial rainfall by each researcher is not clearly defined yet. Therefore, in this research, it is suggested that, with the introduction of SOM (Self-Organizing Map), the standard of initial rainfall be determined after analyzing each sectional data by executing pattern classification about runoff and water quality data measured at the test river basin for this research.

Simulation of Mixing Transport on Inner Reservoir and Influence Impacts on Outer Region for the Saemankeum Effluents Caused by Gate Operation (새만금호 수문 개방에 따른 내측의 혼합수송 및 외해역의 방류영향모의)

  • Suh Seung-Won;Cho Wan-Hei;Yoo Gyeong-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2006
  • Numerical model tests are done in order to evaluate impact zone of low salinity water on outer region of the developing Saemankeum reservoir. Also saline mixing processes are investigated f3r the inner reservoir with consideration of Mankyoung and Donjin riverine flood discharges when sea water is passing freely through gate. In these analyses 2-d ADCIRC, 3-d TIDED3D and CE-QUAL-ICM models are used. Through models tests, it is found that inner reservoir mixing process caused by inflow of outer sea water occurs gradually. It takes at least one month for complete mixing on Mankyoung part and 6 month on Dongjin part of the reservoir. When Sinsi or Garyeok gates are opened to control inner reservoir level, discharging velocities decrease exponentially from the gates, but show very strong currents of 0.5m/sec to the 10Km region apart. These results imply that hydrodynamic circulation and ecosystem of frontal region of the Saemankeum dike might be affected in amount by gate operations, since low saline inner waters are discharged periodically at ebb tide according to tidal level.

Numerical Sensitivity Analysis on Hydraulic Characteristics by Dredging in Upstream of Abrupt Expansion Region (급확대 구간에서 준설영향으로 인한 상류 수리특성 변화에 대한 민감도 분석)

  • Jeong, Seok Il;Ryu, Kwang Hyun;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.46-52
    • /
    • 2017
  • Sediment exchange in river has been affected by artificial changes such as dredging and abnormal climate changes like intense rainfall. Over last decades in Korea, there were many constructions, restoration or rehabilitation in rivers. Therefore, deposition and erosion become more actively occurred than before, which may threaten the river safety such as flood defense. For safety's sake, the dredging of river bed, which is considered as the most typical measure, has been increased to extend hydraulic conveyance compared with previous conditions. However, since it might change the sediment mechanism, there would be another risk at which unexpected side effects such as headward erosion could be occurred. Particularly, sedimentation at abrupt expansion region is able to lead to hydraulic characteristics like water elevation in the upstream region in the beginning of dredging, which, however, has been barely studied in this field. Therefore in this study, the relationship between sediment mechanism at dredging section and hydraulic characteristics in upstream region were presented through numerical simulations in the idealized abruptly widen channel using Delft3D. The ideal channel of 2,000 m length with each side angle of 45 degrees at abruptly widen expansion region was employed to consider the sediment angle of repose. The sensitivity analysis was performed on the dimensionless factors consisted of upstream and downstream depths($h_u$, $h_d$), width($w_u$, $w_d$), water level(H), flow rate(Q) and discharge of sediment($Q_s$). And the sedimentation amount at dredging and the upstream hydraulic characteristics were investigated through that analysis. It showed that $h_d/h_u$, $H/h_u$ and $w_d/w_u$ were more influential in sequence of effect on sedimentation amount, while $h_d/h_u$, $w_d/w_u$ and $H/h_u$ on upstream region. It means that $h_d/h_u$ was revealed as the most significant factors on sedimentation, also it would most highly affect the rising of water level upstream.

Modification of Hydro-BEAM Model for Flood Discharge Analysis (홍수유출해석을 위한 Hydro-BEAM모형의 개선)

  • Park, Jin-Hyeog;Yun, Ji-Heun;Chong, Koo-Yol;Sung, Young-Du
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2179-2183
    • /
    • 2008
  • 지금까지 분포형 모형 개발에 대한 많은 노력이 있음에도 불구하고 여러 제약사항들에 의해 잠재력을 보여주는 정도로 활용되어 왔으나, 최근 급속도로 발전하는 컴퓨터의 계산능력, DEM 등 디지털정보의 구축이 진행되어 오고 있고, GIS 및 인공위성 영상기법의 발달로 공간적인 비균질성을 고려하여 유출과정에서 운동역학적인 이론을 기반으로 물의 흐름을 수리학적으로 추적해 나가는 물리적기반의 분포형 유출모형의 활용도가 높아지고 있다. 본 모형개발에 있어 이론적 배경이 된 모형은 1998년부터 일본 교토대학 방재연구소 코지리 연구실에서 개발 중인 Hydro-BEAM으로 유역 물순환의 건전성을 평가하기 위하여 장기간의 유역 내 유량, 수질을 시계열 및 공간적으로 파악하여 유역의 영향평가를 위해 개발된 물리적 기반의 격자구조를 가진 분포형 장기유출 모형이다. 유출량 계산은 유역내 수평 유출량산정 모듈로서 평면 분포형의 격자형을, 연직 분포형으로는 $A{\sim}B$층의 수평유출량은 하천으로 유입하고, C층은 하천유량에 영향을 미치지 않는 지하수층으로 가정하는 다층모형을 이용해서 A층, 지표 및 하도흐름은 운동파 법(kinematic wave)으로, $B{\sim}C$층의 유출량은 선형저류법으로 계산하는 모형이다. 본 연구에서는 격자흐름방향을 4방향에서 8방향으로 개선하였고, 모형의 각종 수문매개변수들을 GIS와 연계하여 직접 입력할 수 있도록 하였으며, 물리적기반의 침투과정을 모의할 수 있도록 Green & Ampt모듈을 추가하고, 향후 레이더 강우 및 수치예보강우의 홍수유출예측을 염두에 두고 격자강우량을 활용할 수 있도록 하는 등 홍수유출해석을 위한 분포형 강우-유출모형으로 개선 하였고, 이를 남강댐유역에 적용해 봄으로써 모형의 적용성을 검토해 보고자 하였다. 홍수기동안의 지표흐름과 지표하 흐름의 시간적 변화와 공간적 분포를 모의할 수 있었으며, 전처리과정으로서 ArcGIS 혹은 ArcView등의 GIS 프로그램을 이용하여 모형에 필요한 ASCII형태의 입력 매개 변수 자료들을 가공하였다. 또한 후처리과정으로서 모형의 수행결과인 유역내의 유출량 분포 등을 GIS상에서 나타낼 수 있도록 ASCII형태로 출력하도록 구성하였다. 남강댐유역을 대상으로 유역을 500m의 정방형 격자로 분할하고 수계망을 통하여 유역 출구까지 운동파이론에 의해 추적 계산하였으며, 수문곡선 비교결과 재현성 높은 결과를 보여주었다. 모형의 정확성 및 실용성에 대한 보다 정확한 평가를 위해서는 향후 다양한 강우 사상 혹은 다양한 크기의 유역에 대한 유출량의 재현성 및 매개변수 등에 검증이 이루어져야 할 것이다.

  • PDF