• 제목/요약/키워드: flocking

검색결과 75건 처리시간 0.025초

PSO의 특징과 차원성에 관한 비교연구 (Comparative Study on Dimensionality and Characteristic of PSO)

  • 박병준;오성권;김용수;안태천
    • 제어로봇시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.328-338
    • /
    • 2006
  • A new evolutionary computation technique, called particle swarm optimization(PSO), has been proposed and introduced recently. PSO has been inspired by the social behavior of flocking organisms, such as swarms of birds and fish schools and PSO is an algorithm that follows a collaborative population-based search model. Each particle of swarm flies around in a multidimensional search space looking for the optimal solution. Then, Particles adjust their position according to their own and their neighboring-particles experience. In this paper, characteristics of PSO such as mentioned are reviewed and compared with GA which is based on the evolutionary mechanism in natural selection. Also dimensionalities of PSO and GA are compared throughout numeric experimental studies. The comparative studies demonstrate that PSO is characterized as simple in concept, easy to implement, and computationally efficient and can generate a high-quality solution and stable convergence characteristic than GA.

평면상 승객의 회전 자세를 고려한 가속도 기반의 승객 탈출 분석 시뮬레이션 (Acceleration based Passenger Evacuation Simulation Considering Rotation of Passenger on Horizontal Plane)

  • 박광필;조윤옥;하솔;이규열
    • 한국CDE학회논문집
    • /
    • 제15권4호
    • /
    • pp.306-313
    • /
    • 2010
  • In this paper, an acceleration based passenger evacuation simulation is performed. In order to describe a passenger‘s behavior in an evacuation situation, a passenger is modeled as a rigid body which translates in the horizontal plane and rotates along the vertical axis. The position and rotation angle of a passenger are calculated by solving the dynamic equations of motions at each time step. The destination force, the contact force, and the group force are considered as external forces and the moments due to each force are also considered. With the passenger model proposed in this paper, the test problems in International Maritime Organization, Maritime Safety Committee/Circulation 1238(IMO MSC/Circ.1238) are implemented and the effects of passenger rotation on the evacuation time are confirmed.

Flexible and Scalable Formation for Unicycle Robots

  • 김동헌;이용권;김성일;신위재;이현우
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.519-522
    • /
    • 2005
  • This paper presents a self-organizing scheme for multi-agent swarm systems based on coupled nonlinear oscillators (CNOs). In this scheme, unicycle robots self-organize to flock and arrange group formation through attractive and repulsive forces among themselves. It is also shown how localized distributed controls are utilized throughout group behaviors such as formation and migration. In the paper, the proposed formation ensures safe separation and good cohesion performance among the robots. Several examples show that the proposed method for group formation performs the group behaviors such as reference path following, obstacle avoidance and flocking, and the formation characteristics such as flexibility and scalability, effectively.

  • PDF

Fish Schooling Animation System for Constructing Contents of Cyber Aquarium

  • Kim, Jong-Chan;Kim, Eung-Kon
    • 한국전자통신학회논문지
    • /
    • 제2권3호
    • /
    • pp.157-162
    • /
    • 2007
  • The goal of researching a proper crowd animation is to design system that is satisfied with the reality of scenes, performance of system, and interaction with users to show the crowd vividly and effectively in virtual underwater world. In this paper, we smartly expressed the behavior patterns for flocks of fish in virtual underwater and we made up for the weak points in spending time and cost to produce crowd animation. We compared with the number of mesh, the number of fish, the number of frame, elapsed time, and resolution and analyzes them with the fish behavior simulating system. We developed a virtual underwater simulator using this system.

  • PDF

Production of Contents Embodiment for Cyber Underwater Using Environment Fish Schooling Behavior Simulator

  • Kim, Jong-Chan;Cho, Seung-Il;Kim, Chee-Yong;Kim, Eung-Kon
    • 한국멀티미디어학회논문지
    • /
    • 제10권6호
    • /
    • pp.770-778
    • /
    • 2007
  • Fish schooling or group moving in cyber underwater is a part of beautiful and familiar ecosystem. It is not so easy to present the behavior of fish crowd naturally as a computer animation. Thanks to development of computer graphics in entertainment industry, the numbers of digital films and animations is increased and the scenes of numerous crowd are shown to us. Though there are many studies on the techniques to process the behavior of crowd effectively and the developments of crowd behavioral systems, there is not enough study on the development for an efficient crowd behavioral simulator. In this' paper, we smartly present the types offish behavior in cyber underwater and make up for the weak points of time and cost. We develop the fish schooling behavior simulator for the contents of cyber underwater, automating fish behavioral types realistically and efficiently.

  • PDF

생체모방 알고리즘 기반 통신 네트워크 기술

  • 최현호;이정륜
    • 정보와 통신
    • /
    • 제29권4호
    • /
    • pp.62-71
    • /
    • 2012
  • 수십 억년 동안 진화를 거듭해온 지구상의 생명체들은 외부의 제어 없이 독자적으로 단순한 행동 규칙에 따라 기능을 수행하여 주어진 목적의 최적해를 달성한다. 이러한 다양한 생명체의 행동 원리를 모델링하여 만든 알고리즘을 생체모방 알고리즘(Bio-Inspired Algorithm)이라 한다. 생체모방 알고리즘은 다수의 개체가 존재하며, 주변 환경이 동적으로 변하고, 가용 자원의 제약이 주어지며, 이질적인 특성을 갖는 개체들이 분잔 및 자율적으로 움직이는 환경에서 안정성, 확장성, 적응성과 같은 특징을 보여주는데, 이는 통신 네트워크 환경 및 서비스 요구사항과 유사성을 갖는다. 본 논문에서는 대표적인 생체모방 알고리즘으로 통신 및 네트워킹 기술로 사용되는 Ant Colony 알고리즘, Bee 알고리즘, Firefly 알고리즘, Flocking 알고리즘에 대해 살펴보고, 관련 프로젝트 및 연구 동향을 정리한다. 이를 통해 현재의 생체모방 알고리즘의 한계를 극복하고 미래 통신 및 네트워킹 기술이 나아갈 방향을 제시한다.

동적 환경에서 자율 이동 로봇군의 이동을 위한 신경 회로망 기반 인공 생명 모델 (An Artificial Life Model Based on Neural Networks for Navigation of Multiple Autonomous Mobile Robots in the Dynamic Environment)

  • 민석기;강훈
    • 제어로봇시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.180-188
    • /
    • 1999
  • The objective of this paper is, based upon the principles of artificial life, to induce emergent behaviors of multiple autonomous mobile robots which complex global intelligence form from simple local interactions. Here, we propose an architecture of neural network learning with reinforcement signals which perceives the neighborhood information and decides the direction and the velocity of movement as mobile robots navigate in a group. As the results of the simulations, the optimum weight is obtained in real time, which not only prevent the collisions between agents and obstacles in the dynamic environment, but also have the mobile robots move and keep in various patterns.

  • PDF

Electroflocking을 이용한 단섬유 프리프레그 제조에 관한 연구 (Manufacture of Short Fiber Prepreg using Electroflocking)

  • 임순호;이상수;박민;김준경;최철림;권성진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.288-291
    • /
    • 2002
  • The carbon fiber or glass fiber reinforced prepregs were manufactured using electrostatic flocking technology. The powder of high density polyethylene was used as a matrix. The base film of polyethylene was prepared using a fluidized bed of polyethylene powder under the high electric field. We obtained HDPE film with uniform thickness of minimum $80\mu\textrm{m}$. And the fibers were aligned on the molten HDPE film by the electroflocking process. The short fibers with 1mm were easily electrically charged and aligned under the high electric field. The carbon fibers with high conductivity were elasily electrically charged than the glass fibers with low conductivity. So lower electric field was needed for the carbon fibers.

  • PDF

Self-Organization for Multi-Agent Groups

  • Kim, Dong-Hun
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권3호
    • /
    • pp.333-342
    • /
    • 2004
  • This paper presents a framework for the self-organization of swarm systems based on coupled nonlinear oscillators (CNOs). In this scheme, multiple agents in a swarm self-organize to flock and arrange themselves as a group using CNOs, which are able to keep a certain distance by the attractive and repulsive forces among different agents. A theoretical approach of flocking behavior by CNOs and a design guideline of CNO parameters are proposed. Finally, the formation scenario for cooperative multi-agent groups is investigated to demonstrate group behaviors such as aggregation, migration, homing and so on. The task for each group in this scenario is to perform a series of processes such as gathering into a whole group or splitting into two groups, and then to return to the base while avoiding collision with agents in different groups and maintaining the formation of each group.

Flexible and Scalable Formation for Swarm Systems

  • Kim Dong-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권3호
    • /
    • pp.222-229
    • /
    • 2005
  • This paper presents a self-organizing scheme for multi-agent swarm systems based on coupled nonlinear oscillators (CNOs). In this scheme, unicycle robots self-organize to flock and arrange group formation through attractive and repulsive forces among themselves. The main result is the maintenance of flexible and scalable formation. It is also shown how localized distributed controls are utilized throughout group behaviors such as formation and migration. In the paper, the proposed formation ensures safe separation and good cohesion performance among the robots. Several examples show that the proposed method for group formation performs the group behaviors such as reference path following, obstacle avoidance and flocking, and the formation characteristics such as flexibility and scalability, effectively.