• 제목/요약/키워드: floating turbine

검색결과 135건 처리시간 0.024초

하류 풍력발전기의 성능 및 하중에 대한 후류영향 연구 (Study on the effect of wake on the performance and load of a downstream wind turbine)

  • 손재훈;백인수;유능수;남윤수
    • 한국태양에너지학회 논문집
    • /
    • 제34권2호
    • /
    • pp.98-106
    • /
    • 2014
  • The effect of wake on the performance and load of a downstream wind turbine on a floating platform is investigated with a computer simulation in this study. The floating platform consists of a square platform having a dimension of $200m{\times}200m$ with four 2 MW wind turbines installed. For the simulation, only two wind turbines in series with the wind direction were considered and the floating platform was assumed to be stationary due to its large size. Also, a commercial program based on multi-body dynamics and eddy viscosity wake model was used. It was found from simulation that the power from the downstream wind turbine could be reduced by more than 50% of the power from the upstream wind turbine. However, due to the increase in the turbulence intensity, the power is greater but more fluctuating than the power produced by a wind turbine experiencing the same wind speed without wake. Also, it was found that the load of the down stream wind turbine be comes lower than the load of the upstream wind turbine but higher than the load of a wind turbine experiencing the same wind speed without wake.

축대칭 부유구조물을 가지는 부유식 해양구조물의 3차원 지진응답 해석기법 개발 (Analysis of Three-dimensional Earthquake Responses of a Floating Offshores Structure with an Axisymmetric Floating Structure)

  • 이진호;김재관
    • 한국지진공학회논문집
    • /
    • 제19권4호
    • /
    • pp.145-159
    • /
    • 2015
  • A seismic response analysis method for three-dimensional floating offshore structures due to seaquakes is developed. The hydrodynamic pressure exerted on the structure is calculated taking into account the compressibility of the sea water, the fluid-structure interaction, the energy absorption by the seabed, and the energy radiation into infinity. To validate developed method, the hydrodynamic pressure induced by the vibration of a floating massless rigid circular disk is calculated and compared with an exact analytical solution. The developed method is applied to seismic analysis of a support structure for a floating offshore wind turbine subjected to the hydrodynamic pressures induced from a seaquake. Analysis results show that earthquake response of a floating offshore structure can be greatly influenced by the compressibility of fluid, the depth (natural frequencies) of the fluid domain, and the energy absorption capacity of the seabed.

부유식 풍력발전 해석 프로그램 WindHydro 특성 연구 (A Study on the Characteristics of WindHydro - a Floating Wind Turbine Simulation Code)

  • 송진섭;임채환;이성균
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.37.1-37.1
    • /
    • 2011
  • A floating wind turbine dynamic simulation program, 'WindHydro', is newly developed. In order to investigate the characteristics of the program, a series of loading cases are simulated such as (1) wind only case, (2) free decay cases with initial displacement, (3) wave only case (4) wind and wave case. The simulations are carried out for the 5-MW OC3-Hywind model which has a spar buoy and catenary mooring lines. As a result, the reliability of WindHydro is verified in most viewpoints although additional study is still necessary to clear out some uncertainty of the program.

  • PDF

Hydraulic Model Test of a Floating Wave Energy Converter with a Cross-flow Turbine

  • Kim, Sangyoon;Kim, Byungha;Wata, Joji;Lee, Young-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권3호
    • /
    • pp.222-228
    • /
    • 2016
  • Almost 70% of the earth is covered by the ocean. Extracting the power available in the ocean using a wave energy converter has been seen to be eco-friendly and renewable. This study focuses on developing a method for analyzing a wave energy device that uses a cross-flow turbine. The motion of the ocean wave causes an internal bi-directional flow of water and the cross-flow turbine is able to rotate in one direction. This device is considered of double-hull structure, and because of this structure, sea water does not come into contact with theturbine. Due to this, the problem of befouling on the turbine is avoided. This study shows specific relationship for wave length and several motions.

내부 유체 슬로싱 효과를 고려한 부유이송 해상풍력 기초의 동적 안정성 해석 (Dynamic Stability Analysis of Floating Transport Wind-Turbine Foundation Considering Internal Fluid Sloshing Effect)

  • 홍석진;김동현;강신욱;강금석
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권3호
    • /
    • pp.461-467
    • /
    • 2016
  • 부유 이송식 해상풍력 기초를 목표 지점에 설치하기 위해서는 내부의 중공부에 해수를 주입하여 착저 시키게 되는데, 그 과정에서 중량 및 무게 중심과 부력중심이 변하게 되어 부유식 기초가 불안정해 질 수 있다. 부유 이송식 기초의 동적안정성 해석은 기초 외부의 수력학적 하중과 6-자유도 운동을 하게 되는 기초에 작용하는 파도와 조류 하중 및 설치 과정에서 기초 내부의 중공부로 투입되는 해수의 무게중심 이동까지 동시에 고려해야 하는 복잡한 문제이다. 따라서 본 연구에서는 3차원 비정상 CFD 기법과 다물체 동역학 기법을 연성 (coupling)한 정밀 해석기법을 적용하여 부유 이송식 기초 내부 물의 슬로싱 운동까지 고려한 동적안정성 해석을 수행하고 특성을 분석하였다.

탄성 다물체계 동역학을 기반으로 한 부유식 해상 풍력 발전기 타워의 구조 해석 (Structural Analysis of Floating Offshore Wind Turbine Tower Based on Flexible Multibody Dynamics)

  • 박광필;차주환;구남국;조아라;이규열
    • 대한기계학회논문집A
    • /
    • 제36권12호
    • /
    • pp.1489-1495
    • /
    • 2012
  • 본 논문에서는 부유식 플랫폼의 동적 거동을 고려하여 해상 풍력 발전기 타워의 구조 해석을 수행하였다. 풍력 발전기는 플랫폼, 타워, 낫셀, 허브 그리고 3 개의 블레이드로 구성된다. 타워는 3 차원 빔 요소를 사용하여 탄성체로 모델링하여 탄성 다물체계 동역학을 기반으로 한 운동 방정식을 구성하였다. 회전하는 블레이드에는 블레이드 요소 운동량 이론에 따라 계산된 공기역학적 힘이 적용되었고, 부유식 플랫폼에는 유체정역학적 힘, 유체동역학적 힘 그리고 계류력이 적용되었다. 타워의 구조 동역학적 거동을 수치적으로 시뮬레이션하였다. 시뮬레이션 결과를 이용하여 굽힘 모멘트와 응력을 산출하고 허용치와 비교하였다.

Study on Mooring System Design of Floating Offshore Wind Turbine in Jeju Offshore Area

  • Kim, Hyungjun;Jeon, Gi-Young;Choung, Joonmo;Yoon, Sung-Won
    • International Journal of Ocean System Engineering
    • /
    • 제3권4호
    • /
    • pp.209-217
    • /
    • 2013
  • This paper presents a mooring design procedure for a floating offshore wind turbine. Offshore environmental data for Jeju are taken from KHOA (Korea Hydrographic and Oceanographic Administration) and used for the environmental conditions in numerical analyses. A semi-submersible-type floating wind system with a 5-MW-class wind turbine studied by the DeepCwind Consortium is applied. Catenary mooring with a studless chain is chosen as the mooring system. Design deliverables such as the nominal sizes of chain and length of the mooring line are decided by considering the long-term prediction of the breaking strength of the mooring lines where a 100-year return period is used. The designed mooring system is verified using a fatigue calculation based on rain-flow cycle counting, an S-N curve, and a Miner's damage summation of rule. The mooring tension process is obtained from time-domain motion analyses using ANSYS/AQWA.

Analysis of a preliminary configuration for a floating wind turbine

  • Wang, H.F.;Fan, Y.H.;Moreno, Inigo
    • Structural Engineering and Mechanics
    • /
    • 제59권3호
    • /
    • pp.559-577
    • /
    • 2016
  • There are many theoretical analyses and experimental studies of the hydrodynamics for the tension leg platform (TLP) of a floating wind turbine. However, there has been little research on the arrangement of the TLP's internal structure. In this study, a TLP model and a 5-MW wind turbine model as proposed by the Minstitute of Technology and the National Renewable Energy Laboratory have been adopted, respectively, to comprehensively analyze wind effects and wave and current combinations. The external additional coupling loads on the TLP and the effects of the loads on variables of the internal structure have been calculated. The study investigates preliminary layout parameters-namely, the thickness of the tension leg body, the contact mode of the top tower on the tension leg, the internal stiffening arrangement, and the formation of the spoke structure-and conducts sensitivity analyses of the TLP internal structure. Stress is found to be at a maximum at the top of the tension leg structure and the maximum stress has low sensitivity to the load application point. Different methods of reducing maximum stress have been researched and analyzed, and the effectiveness of these methods is analyzed. Filling of the spoke structure with concrete is discussed. Since the TLP structure for offshore wind power is still under early exploration, arrangements and the configuration of the internal structure, exploration and improvements are ongoing. With regard to its research and analysis process, this paper aims to guide future applications of tension leg structures for floating wind turbine.

FSI Analysis of TLP Tether System for Floating Wind Turbine

  • ;김우전
    • 한국해양공학회지
    • /
    • 제24권1호
    • /
    • pp.10-19
    • /
    • 2010
  • ANSYS multi-physics software was applied to solve the coupled dynamic problem related to a full-scale TLP foundation for floating wind turbines. In this coupled dynamics simulation, the forced oscillation imposed on the tethers' top resulting from the sway of the wind turbine platform and the self-excited vortex-induced vibration (VIV) along the tether span have been taken into account. The stability of this tensioned tether system has been validated in the form of separate static and dynamic analyses. The dynamic characteristics of the tensioned tether linked to the floating wind turbine were analyzed by the resultant modal form and its corresponding vortex shedding pattern. The calculated result shows that even a slight forced oscillation imposed on the tethers' top leads to the VIV amplification and enhances the risk of instability in the case of low pretension. It is also found that the "synchronization" would be aggravated when the top tension decreases and the "2P" vortex shedding mode takes place. The increased top tension imposed on the tethers contributes to the stability of the tensioned legs by diminishing the oscillation amplitude markedly.

OC3 Hywind 부유식 풍력발전기 플랫폼의 유체력 계산 및 운동해석 (Hydrodynamic force calculation and motion analysis of OC3 Hywind floating offshore wind turbine platform)

  • 김민수;이강수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권8호
    • /
    • pp.953-961
    • /
    • 2013
  • 이 연구에서는 부유식 풍력발전기 콘셉트모델중의 하나인 5MW급 OC3-Hywind를 해석하였다. 이 모델은 스파형 플랫폼을 가지고 있으며 3개의 현수식 계류삭으로 해저면과 연결되어있다. 수치해석프로그램으로는 NREL에서 개발한 FAST와 AQWA가 사용되었다. FAST에 입력되는 유체력은 AQWA를 통해서 계산되었으며, 운동특성으로는 전달응답함수와 평균운동, 상위1/3운동, 상위1/10운동을 평가하였다. 다른기관의 해석, 실험결과와 비교하였으며, 이 결과는 부유식풍력발전기 컨셉모델의 기초설계를 재해석하는데 있어 도움이 될것이다.