• Title/Summary/Keyword: floating column

Search Result 68, Processing Time 0.025 seconds

Numerical simulation for dispersion of anthropogenic material near shellfish growing area in Geoje Bay (거제만 패류양식 해역에서의 육상기인 물질 확산에 관한 수치실험)

  • KIM, Jin-Ho;LEE, Won-Chan;HONG, Sok-Jin;KIM, Dong-Myung;CHANG, Yong-Hyun;JUNG, Woo-Sung
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.3
    • /
    • pp.831-840
    • /
    • 2016
  • Hydrodynamic condition can be used to predict particle movement within water column and the results used to optimize environmental conditions for effective site selection, setting of environmental quality standard, waste dispersion, and pathogen transfer. To predict the extent of movement of particle from land, 3D hydrodynamic model that includes particle tracking module was applied to Geoje Bay and to calibrate particle tracking model, floating buoy measurement is operated. The model results show that short time is required for particles released into system from river to be transported to the shellfish farming area. It takes about 2 days for the particles to shellfish farming area under mean flow condition. It meant Geoje Bay, especially shellfish farming area is vulnerable to anthropogenic waste from river.

Second Order Elastic Analysis of Superstructures on Very Large Floating Structure with Semi-Rigid Connections (반강접 접합부를 적용한 초대형 부유식 구조물 상부구조체의 2차 탄성해석)

  • Song, Hwa-Cheol;Lee, Eun-Suk
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.63-70
    • /
    • 2003
  • If semi-rigid connections are used for superstructures of very large floating structures (VLFS), the number of rigid connections can be reduced and more economical construction will be possible. In this study, considering service load and wave load in VLFS, the applicability of mixed use of rigid and semi-rigid connections have been studied using three types of connections for a four-bay eight-story frame. Three types of connections are used; top and seat-angle connections with double web-angle(TSD), extended end plate connections, steel tubular column with square external-diaphragm connections. ABAQUS(Finite element analysis program) is used for conducting second order elastic analysis.

Analysis on Interaction of Regular Waves and a Circular Column Structure (전산유체역학을 이용한 규칙파와 원형 기둥 구조물의 상호작용 해석)

  • Song, Seongjin;Park, Sunho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.63-75
    • /
    • 2017
  • In offshore environment, an accurate estimation of a wave-structure interaction has been an important issue for safe and cost effective design of fixed and floating offshore structures exposed to a harsh environment. In this study, a wave-structure interaction around a circular column was investigated with regular waves. To simulate 3D two-phase flow, open source computational fluid dynamics libraries, called OpenFOAM, were used. Wave generation and absorption in the wave tank were activated by the relaxation method, which implemented in a source term. To validate the numerical methods, generated Stokes 2nd-order wave profiles were compared with the analytic solution with deep water condition. From the validation test, grid longitudinal and vertical sizes for wave length and amplitude were selected. The simulated wave run-up and wave loads on the circular column were studied and compared with existing experimental data.

Numerical Analysis of Four Circular Columns in Square Array and Wave Interaction (파랑과 정사각형 배열의 원형 기둥 구조물의 상호작용 수치해석)

  • Song, Seongjin;Park, Sunho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.558-565
    • /
    • 2017
  • Accurate prediction of wave-structure interactions is important in the safety and design cost effectiveness of fixed and floating offshore structures exposed to extreme environmental conditions. In this study, regular waves and circular column structure interactions for four circular columns in regular waves are analyzed. To simulate 3D two-phase flow, open source computational fluid dynamics libraries, called OpenFOAM, were used. When the four circular columns are arranged in a square array, the interactions according to the incident slopes of the regular waves are analyzed. The wave run-up in the circular column surface was compared according to the slope of the incident wave. It was confirmed that high amplitude waves are generated between the circular columns due to the interaction between the circular column and the incident wave. It is expected that this analytical result will be used as the basic data of the study on the air gap due to the interaction between the structure and incident wave.

Control of Cyanobacteria and Phytoplankton Using Physico-chemical Methods (물리·화학적 방법을 이용한 Cyanobacteria와 식물 플랑크톤의 제어)

  • Jheong, Weon-Hwa;Jeon, Eun-Hyung;Ahn, Tea-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.5
    • /
    • pp.75-84
    • /
    • 2004
  • Loess, PAC, MACF and plants were applied to the control of the phytoplankton bloom in laboratory and in field, In field experiment using oil fence, 5ppm concentration of coagulant(PAC) was observed to be effective in controlling the cyanobacterial bloom, resulting in 90% removal of cyanobacteria and phytoplankton from the water column, hi case of Synedra sp., however, only 50% of biomass decreased with the same PAC concentration. MACF(micro-air bubble coagulation and floating), a kind of physicochemical method, was applied to the column of the Kyongan stream and resulted in over 80% chlorophyll a and 73.5% TP removal, Chlorophyll a and total phosphorus were effectively removed from water body when 2.0 g/L of loess with the particle radius of 125 ${\mu}m$ was inputted. In case of experiments involving plants, big cone pine, gingko, and pine needle were observed to be effective in restraining phytoplankton bloom at 0.5g/200ml level. During a field test done at Kyungan stream, where Microcystis heavily occurred, Pine needle and big cone pine were observed to be effective on suppressing algal growth.

A Study on Motion and Wave Drift Force of a BBDB Type OWC Wave Energy Device (BBDB형 진동수주 파력발전장치의 운동 및 파랑표류력 연구)

  • Kim Jin-Ha;Lew Jae-Moon;Hong Do-Chun;Hong Seok-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.22-28
    • /
    • 2006
  • The motion and wave drift forces of floating BBDB (backward-bent duct buoy) wave energy absorbers in regular waves are calculated, taking account of the oscillating surface-pressure due to the pressure drop in the air chamber above the oscillating water column, within the scope of the linear wave theory. A series of model tests has been conducted in order to order to verify the motion and time mean wave drift force reponses in regular waves at the ocean engineering basin, MOERI/KORDI. The pneumatic damping through an orifice-type duct for the BBDB wave energy device are deducted from experimental research. Numerical simulation for motion and drift force responses of the BBDB wave energy device, considering pneumatic damping coefficients, has been carried out, and the results are compared with those of model tests.

Numerical hydrodynamic analysis of an offshore stationary-floating oscillating water column-wave energy converter using CFD

  • Elhanafi, Ahmed;Fleming, Alan;Macfarlane, Gregor;Leong, Zhi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.77-99
    • /
    • 2017
  • Offshore oscillating water columns (OWC) represent one of the most promising forms of wave energy converters. The hydrodynamic performance of such converters heavily depends on their interactions with ocean waves; therefore, understanding these interactions is essential. In this paper, a fully nonlinear 2D computational fluid dynamics (CFD) model based on RANS equations and VOF surface capturing scheme is implemented to carry out wave energy balance analyses for an offshore OWC. The numerical model is well validated against published physical measurements including; chamber differential air pressure, chamber water level oscillation and vertical velocity, overall wave energy extraction efficiency, reflected and transmitted waves, velocity and vorticity fields (PIV measurements). Following the successful validation work, an extensive campaign of numerical tests is performed to quantify the relevance of three design parameters, namely incoming wavelength, wave height and turbine damping to the device hydrodynamic performance and wave energy conversion process. All of the three investigated parameters show important effects on the wave-pneumatic energy conversion chain. In addition, the flow field around the chamber's front wall indicates areas of energy losses by stronger vortices generation than the rear wall.

Dynamic Behavior Assessment of OC4 Semi-submersible FOWT Platform Through Morison Equation

  • Chungkuk Jin;Ikjae Lee;JeongYong Park;MooHyun Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.238-246
    • /
    • 2023
  • This paper proposes an effective inertia coefficient (EIC) in the Morison equation for better wave-force calculations. The OC4 semi-submersible floating offshore wind turbine (FOWT) platform was considered to test the feasibility. Large diffraction at large Keulegan-Carpenter (KC) numbers and the interaction between columns can result in errors in estimating the wave force using the Morison equation with a theoretical inertia coefficient, which can be corrected by the EIC as a function of the wave period and direction. The horizontal and vertical wave forces were calculated using the Morison equation and potential theory at each column, wave period, and wave direction. The EICs of each column were then obtained, resulting in a minimal difference between the Morison inertia force and the wave excitation force by the potential theory. The EICs, wave forces, phase angles, and dynamic motions were compared to confirm the feasibility of an EIC concept under regular and random waves.

Orifice shape effect of the TLCD system under a low frequency (저주파수 하의 TLCD 시스템의 오리피스 형상 효과)

  • Lim, HeeChang
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.1
    • /
    • pp.30-34
    • /
    • 2014
  • Bluff bodies under the external periodic force vibrate at their own natural or forced frequency. Rectangular bodies or similar structures such as high-rise towers and apartments, and recently a well-cited application - offshore floating bodies, usually needs to reduce these vibrations for stability and the mode control. Therefore, this study is aiming to reduce or control the vibration of a structure by a passive control method, i.e., TLCD (Tuned Liquid Column Damper). Controlling a moving body with a TLCD based on a variety of the orifice shape has been preliminary studied. In order to get a proper control, an optimized study is made on the design of the orifice shape, which has internal plates with the holes. The results show the force acting on the body due to the periodic movement highly depends on the number of holes on the plate and the height of the water level. Therefore, the optimum shape of the orifice and the height of the water level should be confirmed by a series of experiments.

Dynamic Response Analysis of Pressurized Air Chamber Breakwater Mounted Wave-Power Generation System Utilizing Oscillating Water Column (진동수주형 파력발전 시스템을 탑재한 압축공기 주입식 방파제의 동적거동 해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Yook, Sung-Min;Jung, Yeong-Hoon;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.225-243
    • /
    • 2014
  • As the economic matters are involved, applying the WEC, which is used for controlling waves as well as utilizing the wave energy on existing breakwater, is preferred rather than installing exclusive WEC. This study examines the OWC mounted on a pressurized air chamber floating breakwater regarding the functionality of both breakwater and wave-power generation. In order to verify the performance as a WEC, the velocity of air flow from pressurized air chamber to WEC has to be evaluated properly. Therefore, numerical simulation was implemented based on BEM from linear velocity potential theory as well as Boyle's law with the state equation to analyze pressurized air flow. The validity of the obtained values can be determined by comparing the previous results from numerical analysis and empirically obtained values of different shapes. In the actual numerical analysis, properties of wave deformation around OWC system mounted on fixed type and floating type breakwaters, motions of the structure with air flow velocities are investigated. Since, the wind power generating system can be hybridized on the structure, it is expected to be applied on complex power generation system which generates both wind and wave power energy.