• Title/Summary/Keyword: flight tests

Search Result 441, Processing Time 0.024 seconds

A Case Study on Collaborative Activities for Newly Installation of an Engine in a Helicopter (헬기 엔진의 신규장착을 위한 지원 사례 연구)

  • Ahn, Ieeki;Kim, Jae-Hwan;Sung, Oksuk
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.2
    • /
    • pp.27-32
    • /
    • 2014
  • From the flight safety and the performance point of views, a new engine installation impacts an helicopter development or upgrade program significantly. More than a close relationship between an aircraft manufacturer and an engine manufacturer is necessary for the best integration work from the program initiation phase. In this paper, technical cooperation between aircraft and engine companies, and technical supports by the engine manufacturer for the T700/701K engine during the Surion development program are summarized. The applications of official technical program documents, US Mil-spec, France airworthiness regulations as the standard of the engine installation work, and engineering activities at each phase such as contract, design and manufacturing, flight clearance, ground and flight tests are described. This paper would be a cornerstone for the future domestic helicopter development program.

Estimation of Ground Clutter Reflectivity based on the CFT(Captive Flight Test) (항공기 탑재 시험을 통한 지상 클러터 반사계수 추정)

  • Son, Chang-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.87-95
    • /
    • 2006
  • The performance of a microwave missile seeker and radar operating in an air-to-air look-down mode is strongly influenced by the presence of ground clutter In order to correctly account for the effects of ground clutter, it is required to develop a model capable of representing clutter characteristics as a function of range and/or frequency. In this paper, a program to estimate the clutter reflectivity for various ground conditions is developed, using the actually measured data and the data available from open literatures. In addition, clutter characteristics measured for various ground conditions such as sea, agricultural area, urban city and industrial area through the captive flight tests are presented.

Optical Design, Test, and alignment of BITSE

  • Kim, Jihun;Choi, Seonghwan;Park, Jongyeob;Yang, Heesu;Baek, Ji-Hye;Kim, Jinhyun;Kim, Yeon-Han;Newmark, Jeffrey S.;Gong, Qian;Gopalswamy, Natchumuthuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.57.1-57.1
    • /
    • 2019
  • NASA and Korea Astronomy and Space Science Institute (KASI) have been collaborated to develop the Space solar coronagraph instrument to detect the solar wind speed and corona temperature. As an intermediate stage, BITSE is the Balloon-Borne instrument to prove our proposed technical method which uses a polarized light in 4 different bandwidth wavelengths. In the presentation, the optical design based on the requirements, tests and alignment process for integrating the system are discussed.

  • PDF

Range Safety System Operation in KSR-III Flight Test (KSR-III 비행안전 시스템 운영)

  • Ko, Jeong-Hwan;Kim, Jeong-Rae;Park, Jeong-Joo;Bang, Hee-Jin;Choi, Dong-Min;Song, Sang-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.91-97
    • /
    • 2004
  • The first Korean liquid propellant rocket KSR-III successfully finished its flight test on Nov. 28, 2002. Herein, we summarize the results of range safety system operation which is employed for the first time in flight tests of rockets developed by Korea Aerospace Research Institute(KARI). During the flight, safety-critical flight data including instantaneous impact points are monitored in realtime by range safety officers utilizing Range Safety Display Systems. The recorded screen of the display system is presented for the explanation of safety operation. In addition, comparisons are made between onboard navigation system based and radar based results in calculating instantaneous impact points, and also errors from the finally recorded impact point are described.

Test of KSR-III Rocket Propellant Feeding System Using PTA-II Test Facility (PTA-II 시험설비를 활용한 KSR-III Rocket 추진기관시스템 종합시험)

  • Kang Sun-il;Cho Sang-yoen;Kwon Oh-sung;Lee Jeong-ho;Oh Seung-hyup;Ha Sung-up;Kim Young-han
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.263-266
    • /
    • 2002
  • The KSR-III developed by KARI is the first rocket vehicle which is adopting the liquid propellant rocket engine system in Korea. Not only the engine itself, but also the propellant feeding system is one of the most important component in liquid rocket vehicle. In this paper, the authors are intended to introduce the multi-purpose test facility(PTA-II Test Facility) which is constructed for the variety of tests on KSR-III feeding system(single component tests, verification tests, cold flow tests and combustion tests). With the results of these tests, we can identify the characteristics of rocket feeding system and decide the optimum setting values of feeding system for the successful flight.

  • PDF

Aerodynamic Design of the Solar-Powered High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV)

  • Hwang, Seung-Jae;Kim, Sang-Gon;Kim, Cheol-Won;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.132-138
    • /
    • 2016
  • Korea Aerospace Research Institute (KARI) is developing an electric-driven HALE UAV in order to secure system and operational technologies since 2010. Based on the flight tests and design experiences of the previously developed electric-driven UAVs, KARI has designed EAV-3, a solar-powered HALE UAV. EAV-3 weighs 53kg, the structure weight is 22kg, and features a flexible wing of 19.5m in span with the aspect ratio of 17.4. Designing the main wing and empennage of the EAV-3 the amount of the bending due to the flexible wing, 404mm at 1-G flight condition based on T-800 composite material, and side wind effects due to low cruise speed, $V_{cr}=6m/sec$, are carefully considered. Also, unlike the general aircraft there is no center of gravity shift during the flight because of the EAV-3 is the solar-electric driven UAV. Thus, static margin cuts down to 28.4% and center of gravity moves back to 31% of the Mean Aerodynamic Chord (MAC) comparing with the previously designed the EAV-2 and EAV-2H/2H+ to upgrade the flight performance of the EAV-3.

Development of Transient Simulation Program for Smart UAV Propulsion System (스마트 무인기 추진기관의 천이 모사 프로그램 개발)

  • Lee, Chang-Ho;Ki, Ja-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.63-69
    • /
    • 2011
  • The Smart UAV must have the control characteristics of propulsion system necessary for both rotary aircraft and fixed wing aircraft though it equips turbo-shaft engine. To develop an electronic engine controller in the future, it is necessary to accumulate the experience of engine operation and data of tilt rotor aircraft. For this purpose, the computer programs which predict engine performance in the steady state and transient state can be utilized for the supplementation of flight test data. In this work, we developed a dynamic analysis program using engine performance data gathered during the flight tests. In addition the accuracy of the program was verified through comparison with flight test data and the results of steady-state performance analysis program.

A Case Study of Vibration Reduction of Helicopter Development Configuration Using Graphic Analysis and Desirability Function (그래프 분석과 호감도 함수를 이용한 헬리콥터 개발형상의 진동저감 사례)

  • Kim, Se Hee;Lee, Gun Myung;Shin, Byung Cheol;Byun, Jai Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.341-358
    • /
    • 2015
  • Purpose: This paper presents graphic methods and desirability function approach to determine best vibration reducing configuration for Surion helicopter. Many flight tests were executed and nine vibration levels in cockpit, cabin, and engine room were measured in each test and analyzed to find optimal configuration. Methods: Graphic analysis methods such as matrix, scatter, and box plots are used to identify better vibration-reducing flight test conditions. As an integrated measure of the performance of 9 vibration levels desirability function approach is adopted. Results: Three vibration reducing configurations are found to be proper and one configuration is recommended. Conclusion: It is expected to be helpful to adopt graphic and desirability function methods presented in this paper in developing new products or systems like helicopters. For efficient and effective flight testing of helicopters, it will be necessary to have consistently homogeneous environment for flight testing and applying design of experiments techniques and analyzing test data.

Development of a Robot Ornithopter 'Songgolmae' (로봇 날개짓 비행체 '송골매' 개발)

  • Chang, J.W.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.11 no.1
    • /
    • pp.5-16
    • /
    • 2003
  • The present study was carried out to develop highly efficient RC ornithopter 'Songgolmae' powered by motor and battery. Designed electric ornithopter, which has the dimension of O.88m(W)${\times}$0.56m(L)${\times}$0.15m(H), is smaller than a conventional ornithopter. This ornithopter weighs 277 grams and has 3 channels radio control. It runs on an electric motor by a lithium polymer battery and has a gear ratio of about 75${\sim}$95 to 1 to flap its 88 cm wingspan. The aerodynamic performance of the ornithopter, applied to a flapping motion only, was validated by flight tests. Flight times have exceeded 23 minutes until the battery was used up. The flight test results indicate that the ornithopter developed here has sufficient thrust to propel itself in a forward flight. From the economical point of view and the handling of the RC ornithopter, it can be said that the developed robot ornithopter is an effective RC ornithopter. This robot ornithopter flies its way high into the sky just like a real bird flies. The robot ornithopter is used for a wide range of missions.

  • PDF

A Frequency Analysis of the Control Input for Right Test (비행시험용 조종입력의 주파수분석)

  • Kwon Tae-Hee;Chang Jae-Won;Choi Sun-Woo;Seong Kie-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.1 s.20
    • /
    • pp.39-48
    • /
    • 2005
  • After the development of the Firefly, flight tests have been performed to verify the performance and get the parameters for the mathematical model of the aircraft. The flight test data is used to get parameters for the mathematical model of the aircraft through the parameter identification process. An arbitrary control input is applied to the test flight which is a part of parameter identification process. A square wave has been used a control input which is called Doublet signal. The aspect of the signal is same length and magnitude in both (+) and (-) directions such as sine wave. The Doublet signal is composed of a dominant frequency and many high frequencies, so that it is appropriate signal to excite the motion of an aircraft. In this paper, the control input of the flight test data has been analyzed to check the efficiency of the control input using DFT(Discrete Fourier Transform). From the result of analysis, an alternative input was extracted.