• Title/Summary/Keyword: flight simulator

Search Result 222, Processing Time 0.032 seconds

A Comparative Study of Domestic and International regulation on Mixed-fleet Flying of Flight crew (운항승무원의 항공기 2개 형식 운항관련 국내외 기준 비교 연구)

  • Lee, Koo-Hee
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.403-425
    • /
    • 2015
  • The Chicago Convention and Annexes have become the basis of aviation safety regulations for every contracting state. Generally, the State's aviation safety regulations refer to the Standards and Recommended Practices(SARPs) provided in the Annexes of the Chicago Convention. In order to properly reflect international aviation safety regulations, constant studies of the aviation fields are of paramount importance. This Paper is intended to identify the main differences between korean and foreign regulation and suggest a few amendment proposals on Mixed-fleet Flying(at or more two aircraft type operation) of flight crew. Comparing with these regulations, the korean regulations and implementations have some insufficiency points. I suggest some amendment proposals of korean regulations concerning Mixed-fleet Flying that flight crew operate aircraft of different types. Basically an operator shall not assign a pilot-in-command or a co-pilot to operate at the flight controls of a type of airplane during take-off and landing unless that pilot has operated the flight controls during at least three take-offs and landings within the preceding 90 days on the same type of airplane or in a flight simulator. Also, flight crew members are familiarized with the significant differences in equipment and/or procedures between concurrently operated types. An operator shall ensure that piloting technique and the ability to execute emergency procedures is checked in such a way as to demonstrate the pilot's competence on each type or variant of a type of airplane. Proficiency check shall be performed periodically. When an operator schedules flight crew on different types of airplanes with similar characteristics in terms of operating procedures, systems and handling, the State shall decide the requirements for each type of airplane can be combined. In conclusion, it is necessary for flight crew members to remain concurrently qualified to operate multiple types. The operator shall have a program to include, as a minimum, required differences training between types and qualification to maintain currency on each type. If the Operator utilizes flight crew members to concurrently operate aircraft of different types, the operator shall have qualification processes approved or accepted by the State. If applicable, the qualification curriculum as defined in the operator's Advanced Qualification Program could be applied. Flight crew members are familiarized with the significant differences in equipment and/or procedures between concurrently operated types. The difference among different types of airpcrafts decrease and standards for these airpcrafts can be applied increasingly because function and performance have been improved by aircraft manufacture company in accordance to basic aircraft system in terms of developing new aircrafts for flight standard procedure and safety of flight. Also, it becomes more necessary for flight crews to control multi aircraft types due to various aviation business and activation of leisure business. Nevertheless, in terms of flight crew training and qualification program, there are no regulations in Korea to be applied to new aircraft types differently in accordance with different levels. In addition, it has no choice different programs based on different levels because there are not provisions to restrict or limit and specific standards to operate at or more than two aircraft types for flight safety. Therefore the aviation authority introduce Flight Standardization and/or Operational Evaluation Board in order to analysis differences among aircraft types. In addition to that, the aviation authority should also improve standard flight evaluation and qualification system among different aircraft types for flight crews to apply reasonable training and qualification efficiently. For all the issue mentioned above, I have studied the ICAO SARPs and some state's regulation concerning operating aircraft of different types(Mixed-fleet flying), and suggested some proposals on the different aircraft type operation as an example of comprehensive problem solving. I hope that this paper is 1) to help understanding about the international issue, 2) to help the improvement of korean aviation regulations, 3) to help compliance with international standards and to contribute to the promotion of aviation safety, in addition.

Development of Attitude Heading Reference System based on MEMS for High Speed Autonomous Underwater Vehicle (고속 자율 무인잠수정 적용을 위한 MEMS 기술기반 자세 측정 장치 개발)

  • Hwang, A-Rom;Ahn, Nam-Hyun;Yoon, Seon-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.666-673
    • /
    • 2013
  • This paper proposes the performance evaluation test of attitude heading reference system (AHRS) suitable for small high speed autonomous underwater vehicle(AUV). Although IMU can provides the detail attitude information, it is sometime not suitable for small AUV with short operation time in view of price and the electrical power consumption. One of alternative for tactical grade IMU is the AHRS based micro-machined electro mechanical system(MEMS) which can overcome many problems that have inhibited the adoption of inertial system for small AUV such as cost and power consumption. A cost effective and small size AHRS which incorporates measurements from 3-axis MEMS gyroscopes, accelerometers, and 3-axis magnetometers has been developed to provide a complete attitude solution for AUV and the attitude calculation algorithm is derived based the coordinate transform equation and Kalman filter. The developed AHRS was validated through various performance tests as like the magnetometer calibration, operating experiments using land mobile vehicle and flight motion simulator (FMS). The test of magnetometer calibration shows the developed MEMS AHRS is robust to the external magent field change and the test with land vehicle proves the leveling error of developed MEMS AHRS is below $0.5^{\circ}/hr$. The results of FMS test shows the fact that AHRS provides the measurement with $0.5^{\circ}/hr$ error during 5 minutes operation time. These results of performance evaluation tests showed that the developed AHRS provides attitude information which error of roll and pitch are below $1^{\circ}$ and the error of yaw is below $5^{\circ}$ and satisfies the required specification. It is expected that developed AHRS can provide the precise attitude measurement under sea trial with real AUV.

Analysis on Energy Consumption Required for Building DTLS Session Between Lightweight Devices in Internet of Things (사물인터넷에서 경량화 장치 간 DTLS 세션 설정 시 에너지 소비량 분석)

  • Kwon, Hyeokjin;Kang, Namhi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1588-1596
    • /
    • 2015
  • In the Internet of Things (IoT), resource-constrained devices such as sensors are capable of communicating and exchanging data over the Internet. The IETF standard group has specified an application protocol CoAP, which uses UDP as a transport protocol, allows such a lightweight device to transmit data. Also, the IETF recommended the DTLS binding for securing CoAP. However, additional features should be added to the DTLS protocol to resolve several problems such as packet loss, reordering, fragmentation and replay attack. Consequently, performance of DTLS is worse than TLS. It is highly required for lightweight devices powered by small battery to design and implement a security protocol in an energy efficient manner. This paper thus discusses about DTLS performance in the perspective of energy consumption. To analyze the performance, we implemented IEEE 802.15.4 based test network consisting of constrained sensor devices in the Cooja simulator. We measured energy consumptions required for each of DTLS client and server in the test network. This paper compares the energy consumption and amount of transmitted data of each flight of DTLS handshake, and the processing and receiving time. We present the analyzed results with regard to code size, cipher primitive and fragmentation as well.

A Preliminary Development of Real-Time Hardware-in-the-Loop Simulation Testbed for the Satellite Formation Flying Navigation and Orbit Control (편대비행위성의 항법 및 궤도제어를 위한 실시간 Hardware-In-the-Loop 시뮬레이션 테스트베드 초기 설계)

  • Park, Jae-Ik;Park, Han-Earl;Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.99-110
    • /
    • 2009
  • The main purpose of the current research is to developments a real-time Hardware In-the-Loop (HIL) simulation testbed for the satellite formation flying navigation and orbit control. The HIL simulation testbed is integrated for demonstrations and evaluations of navigation and orbit control algorithms. The HIL simulation testbed is composed of Environment computer, GPS simulator, Flight computer and Visualization computer system. GPS measurements are generated by a SPIRENT GSS6560 multi-channel RF simulator to produce pseudorange, carrier phase measurements. The measurement date are transferred to Satrec Intiative space borne GPS receiver and exchanged by the flight computer system and subsequently processed in a navigation filter to generate relative or absolute state estimates. These results are fed into control algorithm to generate orbit controls required to maintain the formation. These maneuvers are informed to environment computer system to build a close simulation loop. In this paper, the overall design of the HIL simulation testbed for the satellite formation flying navigation and control is presented. Each component of the testbed is then described. Finally, a LEO formation navigation and control simulation is demonstrated by using virtual scenario.

Performance Simulation of a Turboprop Engine for Basic Trainer

  • Kong, Changduk;Ki, Jayoung;Chung, Sukchoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.839-850
    • /
    • 2002
  • A performance simulation program for the turboprop engine (PT6A-62), which is the power plant of the first Korean indigenous basic trainer KT-1, was developed for performance prediction, development of an EHMS (Engine Health Monitoring System) and the flight simulator. Characteristics of components including compressors, turbines, power turbines and the constant speed propeller were required for the steady state and transient performance analysis with on and off design point analysis. In most cases, these were substituted for what scaled from similar engine components'characteristics with the scaling law. The developed program was evaluated with the performance data provided by the engine manufacturer and with analysis results of GASTURB program, which is well known for the performance simulation of gas turbines. Performance parameters such as mass flow rate, compressor pressure ratio, fuel flow rate, specific fuel consumption and turbine inlet temperature were discussed to evaluate validity of the developed program at various cases. The first case was the sea level static standard condition and other cases were considered with various altitudes, flight velocities and part loads with the range between idle and 105% rotational speed of the gas generator. In the transient analysis, the Continuity of Mass Flow Method was utilized under the condition that mass stored between components is ignored and the flow compatibility is satisfied, and the Modified Euler Method was used for integration of the surplus torque. The transient performance analysis for various fuel schedules was performed. When the fuel step increase was considered, the overshoot of the turbine inlet temperature occurred. However, in case of ramp increase of the fuel longer than step increase of the fuel, the overshoot of the turbine inlet temperature was effectively reduced.

Design and Development of PCI-based 1553B Communication Software for Next Generation LEO On-Board Computer (차세대 저궤도 위성의 PCI 기반의 1553B 통신 소프트웨어 설계)

  • Choi, Jong-Wook;Jeong, Jae-Yeop;Yoo, Bum-Soo
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.65-71
    • /
    • 2016
  • Currently developing the OBC of the next-generation LEO satellite by Korea Aerospace Research Institute adopts the LEON2-FT/AT697F processor to achieve high performance. And various communication devices such as SpaceWire, MIL-STD-1553B, DMAUART and CAN Master are integrated to the separated standard communication FPGAs within the OBC, where they can be controlled by the processor and flight software (FSW) through PCI interface. The Actel 1553BRM IP core is used for the 1553B in the next-generation LEO OBC and the B1553BRM wrapper from Aeroflex Gaisler is used for connecting it to the AMBA bus in FPGA. This paper presents the design and development of PCI-based 1553B communication software, and describes the handling mechanism of 1553B operation in FSW task level. Also it shows the test results on real-hardware and simulator.

Image-Based Modeling of Urban Buildings Using Aerial Photographs and Digital Maps (항공사진과 수치지도를 이용한 도시 건물의 이미지 기반 모델링)

  • Yoo, Byounghyun;Han, Soonhung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.1
    • /
    • pp.49-62
    • /
    • 2005
  • The VR (virtual reality) simulator such as helicopter simulation needs virtual environment of existing urban area. But the real urban environment keeps changing. We need a modeling method to make use of the GIS data that are updated periodically. The flight simulation needs to visualize not only buildings in near distance but also a large number of buildings in the far distance. We propose a method for modeling urban environment from aerial image and digital map with a comparatively small manual work. Image based modeling is applied to urban model which considers the characteristic of Korean cities. Buildings in the distance can be presented without creating a lot of polygons. Proposed method consists of the pre-processing stage which prepares the model from the GIS data and the modeling stage which makes the virtual urban environment. The virtual urban environment can be modeled with the simple process which utilizes the height map of buildings.

  • PDF

Aircraft 4D Trajectory Model for Air Traffic Control Simulator (항공교통관제 시뮬레이션을 위한 항공기 4D 궤적모델 개발)

  • Jung, Hyuntae;Lee, Keumjin
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.264-271
    • /
    • 2017
  • This paper presents air traffic control simulation model for generating 4D trajectory, and aircraft dynamic model based on 4D trajectory information. With aircraft parameters from BADA and Total Energy Model, the trajectory is defined through modified Bezier curve and the simulation supports two aircraft control methods based on controlled time of arrival (CTA) or airspeed. The simulation results shown that flight time and path were almost identical to the defined trajectory, and derived the differences of each control methods according to wind conditions. Based on the simulation model developed in this study, it is expected to be applied to various air traffic management researches. Future studies will focus on applying optimization techniques in order to minimize the difference between generated trajectories and actual flight routes. This work will increase utilization of developed simulation futhermore.

Geometric Modeling and Data Simulation of an Airborne LIDAR System (항공라이다시스템의 기하모델링 및 데이터 시뮬레이션)

  • Kim, Seong-Joon;Min, Seong-Hong;Lee, Im-Pyeong;Choi, Kyung-Ah
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.311-320
    • /
    • 2008
  • A LIDAR can rapidly generate 3D points by densely sampling the surfaces of targets using laser pulses, which has been efficiently utilized to reconstruct 3D models of the targets automatically. Due to this advantage, LIDARs are increasingly applied to the fields of Defense and Security, for examples, being employed to intelligently guided missiles and manned/unmanned reconnaissance planes. For the prior verification of the LIDAR applicability, this study aims at generating simulated LIDAR data. Here, we derived the sensor equation by modelling the geometric relationships between the LIDAR sub-modules, such as GPS, IMU, LS and the systematic errors associated with them. Based on this equation, we developed a program to generate simulated data with the system parameters, the systematic errors, the flight trajectories and attitudes, and the reference terrain model given. This program had been applied to generating simulated LIDAR data for urban areas. By analyzing these simulated data, we verified the accuracy and usefulness of the simulation. The simulator developed in this study will provide economically various test data required for the development of application algorithms and contribute to the optimal establishment of the flight and system parameters.

Effects of Underexpanded Plume in Transonic Region on Longitudinal Stability (천음속 영역에서 과소 팽창 화염이 종안정성에 미치는 영향에 관한 연구)

  • Jung, Suk-Young;Yoon, Sung-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.118-128
    • /
    • 2004
  • Exhaust plume effects on longitudinal aerodynamics of missile were investigated by wind tunnel tests using a solid plume simulator and CFD analyses with both the solid plume and air jet plumes. Approximate plume boundary prediction technique was used to produce the outer shape of the solid plumer and chamber conditions and nozzle shapes of the air jet plumes were determined through plume modeling technique to compensate the difference in thermodynamic properties between air and real plume. From comparisons among turbulence models in case of external flow interaction with the air jet plume, Spalart-Allmaras model turned out to give accurate result and to be less grid-dependent. Effects induced by the plume were evaluated through the computations with Spalart-Allmaras turbulence model and the air jet plume to account for various ratios of chamber and ambient pressure and Reynolds number under the flight test condition.