• Title/Summary/Keyword: flight engineers

Search Result 646, Processing Time 0.029 seconds

The transport property of direct conversion material a-Se:As film for digital radiography

  • Kim, Jae-Hyung;Park, Chang-Hee;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.343-344
    • /
    • 2007
  • Carrier mobility was measured using time-of-flight (TOF) measurements to investigate the transport properties of holes and electrons in stabilized a-Se film. A laser beam with pulse duration of 5 ns and wavelength of 350 nm was illuminated on the surface of a-Se with thickness of $400\;{\mu}m$. The measured transit times of hole and electron were about $8.73\;{\mu}s\;and\;229.17\;{\mu}s$, respectively. The experimental results showed that the hole and electron drifting mobility were $0.04584\;cm^2V^{-1}S^{-1}\;and\;0.00174\;cm^2V^{-1}s^{-1}\;at\;10\;V/{\mu}m$.

  • PDF

Displaying Multiple Maritime Surveillance Radar Data (다수의 해안감시 레이더자료 전시 기법)

  • Hwang, Gyu-Hwan;Kim, Moon-Ki;Kang, Do-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1041-1048
    • /
    • 2012
  • We display important test information from radar, telemetry in real time for monitoring and control of guided missile flight test. Clearing test area is the most important thing for safety. Thus, we have to constantly monitor and control ships around the test area. Several maritime surveillance radars are deployed around the test area for that purpose. However, multiple points are displayed for the same target when using multiple surveillance radars and this confuses the test personnel during the mission. In this paper, we suggested a method to solve this problem by analyzing error factor of surveillance radar and comparing the correlation of each radar data.

Preliminary Design of Movable Air-Turbo Ramjet Engine Intake

  • Lee, Kyung-Jae;Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok;Lee, Dae-Sung;Kwak, Jae-Su
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.480-485
    • /
    • 2008
  • In this study, two types of ramjet intake were designed for the flight condition of Mach number 2 and 5 and numerical analysis was performed. In order to widen the flight envelope range(Mach number $2{\sim}6$), movable intake concept was applied. The central body was designed so that the capture area ratio which is one of most important factors of ramjet intake design could be adjusted. And various types of cowl and movable insert part of shell were designed in order to control throat area which could increase total pressure recovery. The numerical results showed that the designed ramjet intake could be applied in various flights Mach number.

  • PDF

Novel Ramjet Propulsion System using Liquid Bipropellant Rocket for Launch Stage

  • Park, Geun-Hong;Kwon, Se-Jin;Lim, Ha-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.506-510
    • /
    • 2008
  • Ramjets are capable of much higher specific impulse than liquid rocket engines for high speed flight in the atmosphere. Ramjets, however, cannot generate thrust at low flight speed. Therefore, an additional propulsion device to accelerate the ramjet vehicle to a supersonic speed is required. In this study, we propose a novel ramjet propulsion system with a $H_2O_2$/Kerosene rocket as the accelerator for initial stage. In order to test the feasibility of this concept, consecutive reactors was built; one for the decomposition of $H_2O_2$ and the other for kerosene combustion. Decomposed $H_2O_2$ jet was injected to combustor through converging nozzle from gas generator and over this hot oxygen jet, kerosene was injected by spay injector. Through the various test cases, hypergolic ignition test was carried out and steady combustion was achieved.

  • PDF

Outdoor Swarm Flight System Based on RTK-GPS (RTK-GPS 기반 실외 군집 비행 시스템 개발)

  • Moon, SungTae;Choi, YeonJu;Kim, DoYoon;Seung, Myeonghun;Gong, HyeonCheol
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1315-1324
    • /
    • 2016
  • Recently, the increasing interest in drones has resulted in development of new related technologies. Attention has been focused toward research on swarm flight which controls drones simultaneously without collision. Thus, complicated missions can be completed rapidly through collaboration between drones. Due to low position accuracy, GPS is not appropriate for the outdoor mission involving accurate flight. In addition, the inaccurate position estimation of GPS gives rise to the serious problem of collision, since many drones are controlled in a narrow space. In this study, we increased the accuracy of position estimation through various sensors with Real-Time Kinematic-GPS (RTK-GPS). The mode switching algorithm was proposed to minimize the problem of sensor error. In addition, we introduced the outdoor swarm flight system based on the proposed position estimation.

A Fault-tolerant Inertial Navigation System for UAVs Based on Partition Computing (파티션 컴퓨팅 기반의 무인기 고장 감내 관성 항법 시스템)

  • Jung, Byeongyong;Kim, Jungguk
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.1
    • /
    • pp.29-39
    • /
    • 2015
  • When new inertial navigation systems for an unmanned aerial vehicles are being developed and tested, construction of a fault-tolerant system is required because of various types of hazards caused by S/W and H/W faults. In this paper, a new fault-tolerant flight system that can be deployed into one or more FCCs (Flight Control Computers) is introduced, based on a partition scheme wherein each OFP (Operational Flight Program) partition uses an independent CPU and memory slot. The new fault-tolerant navigation system utilizes one or two FCCs, and executes a primary navigation OFP under development and a stable shadow OFP partition on each node. The fault-tolerant navigation system based on a single FCC can be used for UAVs with small payloads. For larger UAVs, an additional FCC with two OFP partitions can be used to provide both H/W and S/W fault-tolerance. The developed fault-tolerant navigation system significantly removes various hazards in testing new navigation S/Ws for UAVs.

Objective Evaluation of Recurrent Neural Network Based Techniques for Trajectory Prediction of Flight Vehicles (비행체의 궤적 예측을 위한 순환 신경망 기반 기법들의 정량적 비교 평가에 관한 연구)

  • Lee, Chang Jin;Park, In Hee;Jung, Chanho
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.540-543
    • /
    • 2021
  • In this paper, we present an experimental comparative study of recurrent neural network based techniques for trajectory prediction of flight vehicles. We defined and investigated various relationships between input and output under the same experimental setup. In particular, we proposed a relationship based on the relative positions of flight vehicles. Furthermore, we conducted an ablation study on the network architectures and hyperparameters. We believe that this comprehensive comparative study serves as a reference point and guide for developers in choosing an appropriate recurrent neural network based techniques for building (flight) vehicle trajectory prediction systems.