• 제목/요약/키워드: flexure and compression

검색결과 85건 처리시간 0.021초

휨지배 철근콘크리트 부재의 핀칭과 에너지 소산능력 (Pinching and Energy Dissipation Capacity of Flexure-Dominated RC Members)

  • 박홍근;엄태성
    • 콘크리트학회논문집
    • /
    • 제15권4호
    • /
    • pp.594-605
    • /
    • 2003
  • 핀칭은 철근콘크리트 부재의 주기거동 특성을 나타내는 중요한 요소이다. 본 연구에서는 휨지배를 받는 철근콘크리트 부재에 대하여 핀칭거동의 특성과 에너지 소산능력을 연구하기 위하여 수치해석 연구를 실시하였다. 기존의 실험연구와 수치해석 결과를 분석한 결과, 전단거동과 무관한 휨핀칭이 압축력을 받는 부재에서 일어난다는 사실이 밝혀졌다. 그러나 일정한 철근 배근형태와 철근양을 갖는 부재들은 압축력의 영향에 의하여 주기거동의 형상이 변하더라도 재하된 압축력의 크기와 관계없이 일정한 에너지소산능력을 갖는다. 이는 콘크리트는 압축력이 증가함에 따라서 그 영향력이 증대되지만 취성재료로서 에너지 소산능력에 큰 영향을 미치지 않으며, 주로 철근에 의하여 에너지 소산이 일어난다는 사실을 가리킨다. 따라서 실제 재하되는 압축력의 크기에 관계없이 단순 휨을 받는 단면에 대한 해석을 통하여 휨지배 부재의 에너지 소산능력을 계산할 수 있다. 이러한 연구결과에 근거하여 에너지 소산능력과 감쇠보정계수를 평가할 수 있는 실용적인 방법과 설계식을 개발하였으며, 기존의 실험결과와의 비교를 통해 검증하였다. 이 제안된 방법은 일반적인 설계변수를 이용하여 에너지소산능력을 정확히 평가할 수 있으므로, 설계실무에서 편리하게 사용할 수 있다.

Effect of tension stiffening on the behaviour of square RC column under torsion

  • Mondal, T. Ghosh;Prakash, S. Suriya
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.501-520
    • /
    • 2015
  • Presence of torsional loadings can significantly affect the flow of internal forces and deformation capacity of reinforced concrete (RC) columns. It increases the possibility of brittle shear failure leading to catastrophic collapse of structural members. This necessitates accurate prediction of the torsional behaviour of RC members for their safe design. However, a review of previously published studies indicates that the torsional behaviour of RC members has not been studied in as much depth as the behaviour under flexure and shear in spite of its frequent occurrence in bridge columns. Very few analytical models are available to predict the response of RC members under torsional loads. Softened truss model (STM) developed in the University of Houston is one of them, which is widely used for this purpose. The present study shows that STM prediction is not sufficiently accurate particularly in the post cracking region when compared to test results. An improved analytical model for RC square columns subjected to torsion with and without axial compression is developed. Since concrete is weak in tension, its contribution to torsional capacity of RC members was neglected in the original STM. The present investigation revealed that, disregard to tensile strength of concrete is the main reason behind the discrepancies in the STM predictions. The existing STM is extended in this paper to include the effect of tension stiffening for better prediction of behaviour of square RC columns under torsion. Three different tension stiffening models comprising a linear, a quadratic and an exponential relationship have been considered in this study. The predictions of these models are validated through comparison with test data on local and global behaviour. It was observed that tension stiffening has significant influence on torsional behaviour of square RC members. The exponential and parabolic tension stiffening models were found to yield the most accurate predictions.

철근콘크리트 부재의 전단강도 산정모델 (Shear Strength Estimation Model for Reinforced Concrete Members)

  • 이득행;한선진;김강수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권5호
    • /
    • pp.1-8
    • /
    • 2020
  • 이 연구에서는 철근콘크리트 부재의 전단파괴가 휨-전단 메커니즘에 지배된다는 가정을 바탕으로 인장측과 압축측에 대한 2개의 전단요구곡선들과 이에 대응되는 잠재전단강도곡선들을 각각 도출하였으며, 이를 기반으로 전단강도 산정모델을 제안하였다. 제안모델에서는 철근과 콘크리트의 부착거동을 고려하여 휨균열폭과 철근의 국부응력증가분을 산정하였다. 또한, 휨균열로부터 발전되는 지배전단균열의 생성과 균열진전거동을 이론적으로 모사하기 위하여 균열집중계수를 도입하였으며, 이를 통해 단면높이가 큰 철근콘크리트 부재에서 관측되는 크기효과를 반영하였다. 또한, 기존의 해석모델과는 다르게 전단철근과 콘크리트의 전단기여분 사이의 상호작용을 고려할 수 있는 새로운 형태의 수식을 개발하였다. 제안모델의 검증을 위하여 방대한 전단실험체들을 기존문헌으로부터 수집하였으며, 이를 통해 해석모델을 검증한 결과는 제안모델이 실험체들의 재료, 크기 및 철근의 부착특성에 관계없이 실험결과를 정확하게 평가할 수 있음을 보여주었다.

항공기 스킨-스트링거 패널 구조물에 대한 불안정성 해석 프로그램 개발 (A program development for the instability analysis of aircraft skin- stringer panel)

  • 박찬우;김형래;원태훈
    • 한국항공우주학회지
    • /
    • 제33권12호
    • /
    • pp.92-100
    • /
    • 2005
  • 압축하중 하에서 스킨-스트링거 조립체인 패널은 다양한 유형의 불안정이 발생할 수 있다. 불안정의 유형은 패널 또는 스트링거의 좌굴, 굴곡, 비틀림, 주름, 굴곡/비틀림 조합 유형 등으로 나타난다. 이것들에 대한 연구는 오래 전부터 이루어져 왔으나 이론 또는 경험식의 복잡성으로 인해 실제 현장에서 활용하기에는 어려운 문제를 가지고 있다. 따라서 선진 항공업체의 경우, 복잡한 수식과 방법등을 사용하기 편리하도록 해석 프로그램을 개발하여 사용하고 있으나 현재 국내의 경우는 그러하지 못한 실정이다. 따라서 본 연구에서는 압축하중을 받는 스킨-스트링거 조립체에 대한 불안정 유형 및 예비계수 (Reserve factor)의 크기를 산출할 수 있는 해석 프로그램을 개발하였다. 개발된 프로그램은 에어버스사의 관련 프로그램인 APA114의 이론 설명서에 기초하였다. 프로그램 검증을 위하여 A320 패널과 A380패널에 대한 해석을 수행하여 APA114의 결과와 비교하였다.

콘크리트 충전 원형 및 각형 합성 강관 기둥의 압축 거동에 관한 실험적 연구 (An Experimental Study on the Compression Behavior of the Circular and Square Tubular Steel Pipe filled with Concrete)

  • 박강근
    • 한국공간구조학회논문집
    • /
    • 제6권1호
    • /
    • pp.55-63
    • /
    • 2006
  • 본 논문은 콘크리트 충전 원형 및 각형 합성 강관을 기둥부재로서의 적합성 및 적용성을 위한 연구로 두개의 강관을 합성한 콘크리트 충전 강관 기둥의 축압축 좌굴내력 및 변형형상에 대한 실험적 연구이다. 강관 기둥에 대한 연구는 콘크리트 충전 원형 강관 기둥, 콘크리트 충전 각형 강관 기둥, 콘크리트 충전 합성 강관 기둥으로 분류하여 실험을 수행하였다.

  • PDF

LRFD법에 의한 이중합성 박스거더 최대부모멘트 단면 휨 설계 (Flexural Design of Double Composite Box Girder over Interior Pier by LRFD Method)

  • 조은영;신동구
    • 한국강구조학회 논문집
    • /
    • 제19권6호
    • /
    • pp.737-749
    • /
    • 2007
  • LRFD 법을 이용하여 3경간 연속 이중합성 박스거더교의 부모멘트를 받는 내측 교각 위 단면을 설계하였다. 3경간 연속교의 최대경간은 80-120m를 고려하였으며 경간비는 1:1.25:1로 가정하였다. 설계 시에는 최대부모멘트를 받는 이중합성거더 단면의 강도한계상태, 사용성한계상태 및 시공성 검토를 고려하였다. 하부 보강콘크리트가 압축플랜지에 합성되기 전에는 압축플랜지의 좌굴을 검토하였으며 합성 후에는 좌굴이 방지된 것으로 가정하였다. 이중합성 박스거더의 하부플랜지 위에 타설하는 콘크리트의 두께에 따른 단면전체의 휨강성과 휨저항강도를 비롯하여 인장플랜지, 압축플랜지 및 복부판의 휨강도를 비교 분석하였다. 상부플랜지와 하부플랜지 단면적비가 이중합성 박스거더의 연성거동 및 휨응력 분포에 미치는 영향을 검토하고 적절한 단면적비를 분석하였다. 하부 보강콘크리트의 유무에 따른 소요 강재량을 비교한 결과, 이중합성 거더의 경우가 기존 단일합성 거더에 비해 15% 내외의 강재량 절감효과가 있는 것으로 분석되었다.

Effect of the GFRP wrapping on the shear and bending Behavior of RC beams with GFRP encasement

  • Ozkilic, Yasin Onuralp;Gemi, Lokman;Madenci, Emrah;Aksoylu, Ceyhun;Kalkan, İlker
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.193-204
    • /
    • 2022
  • The need for establishing the contribution of pultruded FRP encasements and additional FRP wraps around these encasements to the shear strength and load-deflection behavior of reinforced concrete beams is the main motivation of the present study. This paper primarily focuses on the effect of additional wrapping around the composite beam on the flexural and shear behavior of the pultruded GFRP (Glass Fiber Reinforced Polymer) beams infilled with reinforced concrete, taking into account different types of failure according to av/H ratio (arch action, shear-tension, shear-compression and pure bending). For this purpose, nine hybrid beams with variable shear span-to-depth ratio (av/H) were tested. Hybrid beams with 500 mm, 1000 mm, and 1500 mm lengths and cross-sections of 150x100 mm and 100x100 mm were tested under three-point and four-point loading. Based on the testing load-displacement relationship, ductility ratio, energy dissipation capacity of the beams were evaluated with comprehensive macro damage analysis on pultruded GFRP profile and GFRP wrapping. The GFRP wraps were established to have a major contribution to the composite beam ductility (90-125%) and strength (40-75%) in all ranges of beam behavior (shear-dominated or dominated by the coupling of shear and flexure). The composite beams with wraps were showns to reach ductilities and strength values of their counterparts with much greater beam depth.

Microstructure and mechanical behavior of cementitious composites with multi-scale additives

  • Irshidat, Mohammad R.;Al-Nuaimi, Nasser;Rabie, Mohamed
    • Advances in concrete construction
    • /
    • 제11권2호
    • /
    • pp.163-171
    • /
    • 2021
  • This paper studies the effect of using multi-scale reinforcement additives on mechanical strengths, damage performance, microstructure, and water absorption of cementitious composites. Small dosages of carbon nanotubes (CNTs) or polypropylene (PP) microfibers; 0.05%, 0.1%, and 0.2% by weight of cement; were added either separately or simultaneously into cement mortar. The experimental results show the ability of these additives to enhance the mechanical behavior of the mortar. The best improvement in compressive and flexural strengths of cement mortar reaches 28% in the case of adding a combination of 0.1% CNTs and 0.2% PP fibers for compression, and a combination of 0.2% CNTs and 0.2% PP fibers for flexure. Adding CNTs does not change the brittle mode of failure of plain mortar whereas the presence of PP fibers changes it into ductile failure and clearly enhances the fracture energy of the specimens. Scanning electron microscopic (SEM) images of the fracture surfaces highlights the role of CNTs in improving the adhesion between the PP fibers and the hydration products and thus enhance the ability of the fibers to mitigate cracks propagation and to enhance the mechanical performance of the mortar.

Improving design limits of strength and ductility of NSC beam by considering strain gradient effect

  • Ho, J.C.M.;Peng, J.
    • Structural Engineering and Mechanics
    • /
    • 제47권2호
    • /
    • pp.185-207
    • /
    • 2013
  • In flexural strength design of normal-strength concrete (NSC) beams, it is commonly accepted that the distribution of concrete stress within the compression zone can be reasonably represented by an equivalent rectangular stress block. The stress block it governed by two parameters, which are normally denoted by ${\alpha}$ and ${\beta}$ to stipulate the width and depth of the stress block. Currently in most of the reinforced concrete (RC) design codes, ${\alpha}$ and ${\beta}$ are usually taken as 0.85 and 0.80 respectively for NSC. Nonetheless, in an experimental study conducted earlier by the authors on NSC columns, it was found that ${\alpha}$ increases significantly with strain gradient, which means that larger concrete stress can be developed in flexure. Consequently, less tension steel will be required for a given design flexural strength, which improves the ductility performance. In this study, the authors' previously proposed strain-gradient-dependent concrete stress block will be adopted to produce a series of design charts showing the maximum design limits of flexural strength and ductility of singly-and doubly-NSC beams. Through the design charts, it can be verified that the consideration of strain gradient effect can improve significantly the flexural strength and ductility design limits of NSC beams.

Prediction of curvature ductility factor for FRP strengthened RHSC beams using ANFIS and regression models

  • Komleh, H. Ebrahimpour;Maghsoudi, A.A.
    • Computers and Concrete
    • /
    • 제16권3호
    • /
    • pp.399-414
    • /
    • 2015
  • Nowadays, fiber reinforced polymer (FRP) composites are widely used for rehabilitation, repair and strengthening of reinforced concrete (RC) structures. Also, recent advances in concrete technology have led to the production of high strength concrete, HSC. Such concrete due to its very high compression strength is less ductile; so in seismic areas, ductility is an important factor in design of HSC members (especially FRP strengthened members) under flexure. In this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) and multiple regression analysis are used to predict the curvature ductility factor of FRP strengthened reinforced HSC (RHSC) beams. Also, the effects of concrete strength, steel reinforcement ratio and externally reinforcement (FRP) stiffness on the complete moment-curvature behavior and the curvature ductility factor of the FRP strengthened RHSC beams are evaluated using the analytical approach. Results indicate that the predictions of ANFIS and multiple regression models for the curvature ductility factor are accurate to within -0.22% and 1.87% error for practical applications respectively. Finally, the effects of height to wide ratio (h/b) of the cross section on the proposed models are investigated.